Influence of Cutting Tool Overhangs at Machining of Hardened Steels

Karel Osička, Zuzana Fišerová, Jan Otoupalík
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno. Czech Republic.
E-mail: osicka@fme.vutbr.cz, y146256@stud.fme.vutbr.cz, y146257@stud.fme.vutbr.cz

This article builds on existing results of testing hardened steel bearing ring machining. Grinding technology is preferably used for this area as a standard. Turning with cubic boron nitride has been used as an alternative machining technology. Results indicate that in mass production the values accuracy of degree IT 4 can be achieved. Arithmetic mean deviation of the profile is then in the range of Ra = 0.2 - 0.4 µm. During testing several kinds of cubic boron nitride material were used. The material that showed best results was chosen for further experiments. Subsequently it was tested under different cutting conditions on two types of machine tools. It was tested cutting in smaller range of depth of cut and wider feed values. The resultig feedrate and cutting depth which correspond to best result of arithmetic mean deviation of the profile Ra were selected from those tests. Subsequently, the testing was carried out at various cutting speeds and particularly at two different sizes of tool overhangs.

Keywords: hardened steel, CBN, cutting inserts, cutting speed

Acknowledgement

The work has been supported by the Department of Trade and Industry of the Czech Republic under grant FR–TI4/247. The support gained from this source is very gratefully acknowledged.

References


Paper number: M201533
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.

indexed on: http://www.scopus.com