The Mechanics of Machining Ultrafine-Grained Ti-6Al-4Mo Alloy Processed Severe Plastic Deformation

Anastasiya Symonova1, Enrico Filippi2, Ján Kmec3, Ján Majerník3, Monika Karkova3

1Department of Mechanical Engineering, Kremenchuk Mykhailo Ostrohradskyi National University. Pershotravsheva 20, 39600 Kremenchuk. Ukraine. E-mail: Nsymonova@gmail.com
2Department of Machine Design and Production Engineering, University of Mons. Place du Parc 20, B-7000 Mons. Belgium. E-mail: enrico.filippi@umons.ac.be
3Department of Mechanical Engineering, The Institute of Technology and Business in Ceske Budejovice. Okruzni 10, 370 01 Ceske Budejovice. Czech Republic. E-mail: karkova@mail.vstecb.cz

The physics features of the cutting process of ultrafine-grained metals produced by the method of severe plastic deformation are considered. The aim of the research was to evaluate, whether the grain size of titanium alloy has an influence on the characterization of chips, the cutting force components, the surface roughness and the micro-hardness in the cutting process. The experimental data of the machineability of titanium alloy Ti-6Al-4Mo with sub microcrystalline structure are presented in the paper. The features of the chip formation, the changes of the chip ratio and the components of the cutting force are examined. The main characteristics of the cutting mechanics are calculated and based on the experimental values. Also the experimental values of the surface finish roughness and microhardness are shown. It is established, that the change in the structure of the metal has an ambiguous effect on machineability by cutting. Further investigation of the machineability of metals with a submicrocrystalline structure will allow to choose the efficient mechanical treatment.

Keywords: Ultrafine-grained, Titanium alloy, Machineability, Severe plastic deformation

Acknowledgement

The authors would like to thank the Ukraine Ministry of Education and Science (project no. 38ДФ/(17-19)TMu) for supporting this research.

References


