RT Journal Article SR Electronic A1 Yan, Zhang T1 Static and Modal Analysis of the Wheel-side Reducer Cover Plate Based on ANSYS JF Manufacturing Technology Journal YR 2024 VO 24 IS 3 SP 483 OP 491 DO 10.21062/mft.2024.046 UL https://journalmt.com/artkey/mft-202403-0006.php AB The three-point front-mounted electric forklift is an important logistics tool nowadays. The wheel-side reducer is a vital power unit of the electric forklift. The cover plate of the reducer casing, as a key component, bears significant external loads. The cover plate of the casing is prone to deformation under the action of loads, leading to part scrapping and reducing the service life of the entire machine. Additionally, as the cover plate directly connects with the vehicle body, vibrations produced by the electric forklift during operation can affect the working stability of the reducer through the cover plate, reducing its lifespan. When designers design the wheel-side reducer cover plate, they first establish a 3D model of the cover plate using Pro/E. Then, the 3D model is imported into the finite element analysis software ANSYS. By integrating the Newton-Raphson iterative method, the cover plate undergoes static analysis, predicting potential design flaws and proposing corresponding optimization strategies. After several rounds of simulation and optimization, the cover plate meets the usage requirements. Through modal analysis, the inherent frequency of the cover plate is determined. This allows for the assessment of the relationship between the working frequency and inherent frequency, thus facilitating the improvement of the cover plate's design parameters to reduce resonance and noise. Through static and modal analysis, not only is the design cycle of the reducer cover plate shortened and production costs lowered, but resonance is also minimized, enhancing the working stability of the reducer.