PT Journal AU Li, D Jiang, W Qi, H TI Optimized for Silicon Wafer Dicing Blade Machining and Grinding Parameters of Structure SO Manufacturing Technology Journal PY 2025 BP 67 EP 75 VL 25 IS 1 DI 10.21062/mft.2025.009 DE Scribing knife; Grinding mechanism; Tool structure optimization; Parameter optimization AB When diamond scribing knives are used to grind silicon wafers at ultra-high speeds, slight changes in the structure of the diamond scribing knives and changes in the grinding parameters will have a large impact on the processing accuracy and appearance of the silicon wafers. In order to reduce the defective rate of silicon wafers, improve the service life of diamond scribing knives and grinding efficiency. To address this issue, the working mechanism of the scribing knife grinding is analysed in the paper, the influence of spindle speed and feed rate on the quality of the silicon wafer slit when the scribing knife is grinding is studied, and the chipping of silicon wafers is observed through the scanning electron microscope and optical microscope, so as to analyse the shape of the cross-section, length of the cutting edge, concentration of diamond particles in the cutting edge, thickness of the cutting edge and determine the structure of the scribing knife, and to test its influence on the silicon wafer slit by means of the grinding experiments. The structure of the scribing knife was determined, and its influence on the quality of silicon wafer slit was tested by grinding experiment. The results show that the wear rate of diamond particles, slit quality and processing efficiency of the scribing knife are optimal when grinding silicon wafers at 50,000 r/min and 60-80 mm.sec-1. The above study can help to further understand the wear mechanism of the scribing knife in the process of ultra-high-speed grinding of silicon wafers, improve the machining efficiency, and prolong the service life of the tool. ER