Picture Analysis of Failure Areas of Particle Composites

Petr Valášek, Miroslav Müller

Czech University of Life Sciences Prague, Faculty of Engineering, Department of Material Science and Manufacturing Technology, Kamýcká 129, 165 21, Prague, Czech Republic. E-mail: valasekp@tf.czu.cz, muller@tf.czu.cz

Properties of polymeric materials are often optimized by various types of fillers. Optical analyses be means of a microscope can reveal undesirable phenomena which come into being during a preparation of composite systems – they can define areas of filler clusters, an excessive occurrence of air bubbles, which lead to an initiation of cracks. The optical analysis can reveal a low interaction among mutual phases of the composite at the same time, e.g. a low wettability of fillers by a matrix. The paper describes possibilities of using optical analysis at polymeric microparticles composites with the filler on a basis of waste with the matrix from the epoxy resin. The optical analyses identified the air bubbles in failure areas of the composite systems – the average area of the pore in 2D plane corresponded 5 381 μ m².

Keywords: Epoxy resin, Failure, Microscope, Waste

References

- [1] WALASZEK, H. (2013). Impact of new imaging non destructive methods in testing and monitoring of composite and metallic components. In: *American Society of Mechanical Engineers, Pressure Vessels and Piping Division* (Publication) PVP, Vol. ASME 2013 Pressure Vessels and Piping Conference, PVP 2013; Paris; France; 14 July 2013 through 18 July 2013
- [2] ČERNÝ, I. (2014). Monitoring of internal damage of glass fibre reinforced composite components using strain measurements with strain gauges and fibre optic sensors. In: *Applied Mechanics and Materials*, Vol. 486, pp. 58 61.
- [3] STINCHCOMB, W.W. (1986). Nondestructive evaluation of damage accumulation processes in composite laminates. In: *Composites Science and Technology*, Vol. 25, pp.103 118.
- [4] NOVÁK, M. (2011). Surface duality hardened steels after grinding. In: *Manufacturing technology*, Vol. 11, pp. 55 59.
- [5] AFFATATO, S., RUGGIERO, A., et al. (2013). On the roughness measurement of the knee femoral components. In: BIOMODLORE 2013 Palanga (LT) 20-22 Sept. 2013 Vilnius Vilnius Gediminas Technical University Press Technica (Sauletekio al.11, LT-10223, Vilnius, Lithuania.), pp. 16–18.
- [6] RUDAWSKA, A. (2014). Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. In: *International Journal of Adhesion and Adhesives*, Vol. 50, pp. 235 243.
- [7] JOZWIK, J., KRAL, J., KRAL, J., SPIŠÁK, E. (2012). Grinding tools and grinding wheels for shaping CNC grinding machine. In: *Advances in science and technology*, Vol. 15, pp. 221 227
- [8] NÁPRSTKOVÁ, N., CAIS, J., SVOBODOVÁ, J. (2013). The Effect of Modification by Strontium of the AlSi7Mg0.3 Alloy on the Surface Roughness, In: *Manufacturing Technology*, Vol. 13, No. 3, pp. 380 384.
- [9] SEBAIBI, N., BENZERZOUR, M., ABRIAK, N.E. (2014) Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders. In: *Construction and Building Materials*, Vol. 65, pp. 254 260.
- [10] VALÁŠEK, P., MÜLLER, M. (2013). Changes of Polyurethane Mechanicla Properties Filled with Glass Powder. In: *Manufacturing Technology*, Vol.13, No.4, pp. 563 568.
- [11] MÜLLER, M., VALÁŠEK, P. (2012). Abrasive wear effect on Polyethylene, Polyamide 6 and polymeric particle composites. *Manufacturing Technology*, Vol. 12, pp. 55 59.
- [12] VALÁŠEK, P., MÜLLER, M. (2013). Polymeric composite based on glass powder usage possibilities in agrocomplex. In: *Scientia Agriculturae Bohemica*, Vol. 44, pp. 107 112.
- [13] VALÁŠEK, P., ŽARNOVSKÝ, J., MÜLLER, M. (2013). Thermoset composite on basis of recycled rubber. In: *Advanced materials research,* Vol. 801, pp. 67 73.
- [14] BERTHELOT, J. M. (1999). Composite Materials Mechanical Behavior and Structural Analysis. Mechanical engineering series. 635 p., Springer, New York.

Paper number: M201489

Copyright © 2014. Published by Manufacturing Technology. All rights reserved.