Low-Cyclic Fatigue of Adhesive Bonds

Vladimír Šleger, Miroslav Müller

Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: sleger@tf.czu.cz; muller@tf.czu.cz.

An adhesive bonding technology is limited by a cyclic loading of an adhesive bond. The paper deals with a testing of a low-cyclic fatigue of single-lap bonds reinforced with glass beads (B159, a fraction size $90 \pm 20 \mu m$). The aim of the research is a study of a low-cyclic behaviour of structural adhesive bonds by means of a scanning electron microscopy (SEM). The research will contribute to a clarification of the fatigue behaviour (low-cyclic) of structural adhesive bonds. The aim of the study was to evaluate a service life of the adhesive bond in terms of its fatigue loading at a low-cyclic shear test. Values of a pulsating loading for the low-cyclic fatigue tests were chosen from this reason for tested adhesives from static tensile test determined a reference value of a maximum force gained at a statical test according to the standard CSN EN 1465. The number of cycles was 1000 at the 30 % strength reached at the static tensile test of the adhesive itself. The cumulative effect of the shear cyclic loading after 1000 cycles showed micro- and nanocracks in the area of the adhesive. The experiment results did not confirm the assumption that repeated cyclic loading could lead to the premature failure of the adhesive bond.

Keywords: Cracks, Glass beads, Polymer composite, Scanning electron microscopy, Structural adhesive

Acknowledgement

Supported by Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague (Research on mechanical properties of multi-component polymer systems during their preparation, processing and application, 2016:31140/1312/3109).

References

- [1] AGOUDJIL, B., IBOS L., MAJESTÉ, J. C., CANDAU, Y., MAMUNYA, YE. P. (2008). Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. In: Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 2, pp. 342-351.
- [2] KIM, H. S., KHAMIS, M. A. (2001). Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. In: Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 9, pp. 1311 - 1317.
- [3] MÜLLER, M., VALÁŠEK, P. (2012). Abrasive wear effect on Polyethylene, Polyamide 6 and polymer particle composites. In: *Manufacturing Technology*, Vol. 12, No. 12, pp. 55 - 59.
- [4] RAMAZAN, K., MEHMET, S., BEKIR, Y. (2008). Influence of adhesive thickness and filler content on the mechanical performance of aluminium single-lap joints bonded with aluminium powder filled epoxy adhesive. In: *Journal of materials processing technology*, Vol. 205, pp. 183 – 189.
- [5] VALÁŠEK, P., MÜLLER, M. (2015). Abrasive wear in three-phase waste-based polymeric particle composites. In: Tehnicki Vjesnik-Technical Gazette, Vol. 12, No. 2, pp. 257 - 262.
- [6] VALÁŠEK, P., MÜLLER, M., HLOCH, S. (2015). Recycling of corundum particles two-body abrasive wear of polymeric composites based on waste. In: Tehnicki Vjesnik-Technical Gazette, Vol. 22, No. 3, pp. 567 - 572.
- [7] MÜLLER, M. (2011). Polymer composites based on Al2O3 reinforcing particles. In: Engineering for Rural Development 26.05.2011, Jelgava, pp. 423 - 427, Latvia University of Agriculture, Jelgava.
- [8] MÜLLER, M., CIDLINA, J., DĚDIČOVÁ, K., KROFOVÁ, A. (2015). Mechanical properties of polymer composite based on aluminium microparticles. In: Manufacturing Technology, Vol. 15, No. 4, pp. 624 - 628.
- [9] RUGGIERO, A., VALÁŠEK, P., MEROLA, M. (2015). Friction and wear behaviors of Al/Epoxy composites during reciprocating sliding tests. In: *Manufacturing Technology*, Vol. 15, No. 4, pp. 684 – 689.
- [10] MIZERA, Č., HERÁK, D., MÜLLER, M., HRABĚ, P. (2015). Mechanical behaviour of polymeric composite with fibres of false banana (Ensete ventricosum). In: Agronomy Research, Vol. 13, No. 3, pp. 680 - 689.
- [11] MÜLLER, M. (2015). Research on surface treatment of alloy AlCu4Mg adhesive bonded with structural singlecomponent epoxy adhesives. In: Manufacturing Technology, Vol. 15, No. 4, pp. 629 - 633.
- [12] MÜLLER, M., HERÁK, D., VALÁŠEK, P. (2013). Degradation limits of bonding technology depending on destinations Europe, Indonesia. In: Tehnicki Viesnik-Technical Gazette, Vol. 20, No. 4, pp. 571 – 575.
- [13] VALÁŠEK, P. (2015). Polymer microparticles composites with waste EPDM rubber powder. In: Agronomy Research, Vol. 13, No. 3, pp. 723 - 731.

- [14] MÜLLER, M. (2015). Research on constructional shape of bond at connecting galvanized sheet of metal. In: *Manufacturing Technology*, Vol. 15, No. 3, pp. 392 396.
- [15] CHO, J., JOSHI, M. S., SUN, C. T. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. In: *Composites Science and Technology*, Vol. 66, pp. 1941 1952.
- [16] RUDAWSKA, A. (2012). Surface Free Energy and 7075 Aluminium Bonded Joint Strength Following Degreasing Only and Without Any Prior Treatment. In: *Journal Adhesion Science and Technology*, Vol. 26, pp. 1233 1247.
- [17] RUDAWSKA, A. (2014). Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. In: *International Journal of Adhesion and Adhesives*, Vol. 50, pp. 235 243.
- [18] SANCHEZ-SOTO, M., PAGES, P., LACORTE, T., BRICENO, K., CARRASCO, F. (2007). Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites. In: *Composites science and Technology*, Vol. 67, No. 9, pp. 1974 1985.
- [19] SHAO-YUN, F., XI-QIAO, F., BEMD, L., YIU-WING, M. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. In: *Composites: Part B*, Vol. 39, pp. 933 961.
- [20] DEBNATH, S., RANADE, R., WUNDER, S. L., McCOOL, J., BOBERICK, K., BARAN. G. (2004). Interface effects on mechanical properties of particle-reinforced composites. In: *Dental Materials*, Vol. 20, No. 7, pp. 677 686.
- [21] RUGGIERO, A., MEROLA, M., CARLONE, P., ARCHODOULAKI, V. (2015). Tribo-mechanical characterization of reinforced epoxy resin under dry and lubricated contact conditions. In: *Compos Part B: Eng.*, Vol. 79, pp. 595 603.
- [22] VALÁŠEK, P. (2014). Mechanical properties of epoxy resins filled with waste rubber powder. In: Manufacturing Technology, Vol. 14, No. 4, pp. 632 637.
- [23] VALÁŠEK, P. (2015). Influence of surface treatment of steel adherents on shear strength of filled resins. In: *Manufacturing Technology*, Vol. 15, No. 3, pp. 468 474.
- [24] CIDLINA, J., MÜLLER, M., VALÁŠEK, P. (2014). Evaluation of Adhesive Bond Strength Depending on Degradation Type and Time. In: *Manufacturing Technology*, Vol. 14, pp. 8 12.
- [25] ELBINGA, F., ANAGREHB, N., DORNA, L., ULMANNA, E. (1999). Dry ice blastingas pretreatment of aluminum surfaces to improve the adhesive strength of aluminium bonding joints. In: *International Journal of Adhesion & Adhesives*, Vol. 23, pp. 69 79.
- [26] HARRIS, A. F., BEEVERS, A. (1999). The effects of grit-blasting on surface properties for adhesion. In: *International Journal of Adhesion & Adhesives*, Vol. 19, pp. 445 452.
- [27] HRICOVA, J. (2014). Environmentally conscious manufacturing: the effect of metalworking fluid in high speed machining. In: *Key engineering materials*, Vol. 581, pp. 89 94.
- [28] MÜLLER, M. (2011). Influence of surface integrity on bonding process. In: *Research in Agricultural Engineering*, Vol. 57, pp. 153 162.
- [29] NOVÁK, M. (2011). Surface duality hardened steels after grinding. In: *Manufacturing technology*, Vol. 11, pp. 55 59.
- [30] TAMAI, Y., ARATANIC, K. (1972). Experimental study of the relation between contact angle and surface roughness. In: *The Journal of Physical Chemistry*. Vol. 22, pp. 3267 3271.
- [31] VALÁŠEK, P. (2014). Long-term degradation of composites exposed to liquid environments in agriculture. In: Scientia Agriculturae Bohemica, Vol. 3, No. 1, pp. 187 192.
- [32] BROUGHTON, W. R., MERA, R. D., HINOPOULOS, G. (1999). Cyclic Fatigue Testing of Adhesive Joints, Test Method Assessment, Project PAJ3 Combined Cyclic Loadingand Hostile Environments 1996-1999, Report No 8, 34 pp. Centre for Materials Measurement & Technology, National Physical Laboratory, Teddington.
- [33] ŠLEGER, V., MÜLLER, M. (2015). Quasi Static Tests of Adhesive Bonds of Alloy AlCu4Mg. In: *Manufacturing Technology*, Vol. 15, No. 4, pp. 694 698.
- [34] JÄCKEL, M., SCHEIBNER, W. (1991). Boundary layer induced modification of thermal and mechanical properties of epoxy resin composites. In: *Cryogenics*, Vol. 31, No. 4, pp. 269 272.
- [35] DĚDIČOVÁ, K., VALÁŠEK, P. (2016). Influence of glass powder size sorting on properties of composite systems. In: *Scientia Agriculturae Bohemica*, Vol. 47, No. 1, pp. 25 31.

- [36] VALÁŠEK, P. (2015). Mechanical properties of polymer composites based on bioparticles (Jatropha curcas L.) In: *Jurnal Teknologi*, Vol. 76, No. 3, pp. 1 5.
- [37] VALÁŠEK, P. (2016). Study on impact strength of sisal fibers reinforced epoxy composites using experimental methods. In: *Agronomy Research*, Vol. 14, pp. 1116 1122.
- [38] VALÁŠEK, P. (2016). Short sisal fibers reinforced epoxy resins: Tensile strength. In: *Manufacturing Technology*, Vol. 16, No. 3, pp. 637 641.
- [39] FARRAH, N. A., MARIATTI, J., SAMAYAMUTTHIRIAN, P., KHAIRUN, A. M. (2008). Effect of particle shape of silica mineral on the properties of epoxy composites. In: *Composites Science and technology*, Vol. 68, pp. 346 353.
- [40] VALÁŠEK, P., MÜLLER, M. (2012). Polymeric particle composites with filler saturated matrix. In: *Manufacturing Technology*, Vol. 12, No. 13, pp. 272 276.
- [41] MESSLER, R. W. (2004). Joining of materials and structures from pragmatic process to enabling technology, 816 pp. Elsevier, Burlington.

Paper number: M2016213

Copyright © 2016. Published by Manufacturing Technology. All rights reserved.