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It is well known that the dynamic behaviour of a vehicle is affected by the design parameters of its suspension 
system, especially by the stiffnesses of the suspension springs, damping coefficients and tire stiffnesses. Another 
important factor influencing vehicle vibration is kinematic excitation caused by uneven roads. It may significantly 
affect the comfort of the driver and passengers, safety of the ride and relative displacements between the sprung 
and unsprung masses. The paper presents mathematical models of both deterministic and random road uneven-
nesses and numerical simulation of vertical dynamics of planar vehicle models with kinematic excitation caused 
by these road unevennesses. When examining transient phenomena, standardized obstacles according to STN 30 
0560, resp. EU Directive 85/3/EW6-III are applied. Random unevennesses can be obtained experimentally, or ge-
nerated by the Shinozuka method to create the mathematical model of an uneven road with a specified power 
spectral density. Actual vehicle prototypes need to be tested on test circuits with different surfaces.  
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 Introduction 

The vehicle is exposed to different types of excitation 
while driving. In particular, it is a kinematic excitation 
caused by road unevenness, but also by excitation from 
unbalanced engine masses and other moving parts of the 
vehicle. Furthermore, we will only consider kinematic ex-
citation caused by road unevennesses. These can be divi-
ded into two basic types: deterministic and stochastic 
unevennesses, as described, for example, by Nigam 
(1994) [3]. 

Poor roads are among the most important sources of 
vehicle vibration. It significantly influences crew com-
fort, cargo safety and vehicle durability. They also affect 
the safety of the ride and the amount of space required 
between the sprung and unsprung mass. That is why they 
need to pay attention to their modelling [11]. 

When designing vehicles it is important for the vehi-
cle to be tested for the various types of roadway where its 
functionality is expected. This testing is needed both by 
computer simulation and by testing prototype vehicles on 
the test circuit [8]. 

 Deterministic obstacles 

Deterministic obstacles are used to assess the transient 
processes of real vehicles, see, for example, Múčka [2], 
according to STN 30 0560 [6]. This standard defines three 
types of deterministic obstacles, Fig. 1: 

• a cylindrical unevenness with a length of 0.5 m 

and a height of 3 cm, curve 1 in Fig. 1a 

• a cylindrical unevenness with a length of 0.5 m 

and a height of 6 cm, a curve 2 in Fig. 1a, 

• a trapezoidal pit with a depth of 6 cm and a len-

gth of horizontal trapezoidal sides of 0.415 m 

(bottom) and 0.6 m (top), curve 3 in Fig. 1a. 

 
One of the often used retarders is given by a 0.44 m 

cylindrical unevenness with a height of 5 cm (curve 4 in 
Figure 1a). The EU standard 85/3 / EW6-III [1] defines a 
trapezoid with a base length of 5.8 m and a height of 8 
cm, while the length of the shorter horizontal side is 0.8 
m and the vehicle suspension properties are analysed at a 
speed of 5 km / h (curve 6 in Figure 1b). The so-called 
roller blind is approximated by a 3 cm amplitude sinuso-
idal signal with a wavelength of 0.5 m (curve 5 in Figure 
1b). 

 
Fig. 1 Obstacles used to investigate transient events 
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Normalized obstacles, however, are suitable for de-
tecting the properties of suspensions of real vehicles, 
where the tire and its compliance plays a significant role. 
For idealized tire contact with the road, these standard ob-
stacles for numerical simulations are not suitable [10]. 

A suitable non-normalized obstacle for numerical si-
mulation of vehicles with idealized tire-to-road contacts 
is the deterministic hurdle of the so-called „hat“ shape, 
which to some extent respects the actual shape of the tire, 
Fig. 2. It is used, for example, in Volek et al. [7].  

Fig. 2 Deterministic obstacle of the hat shape 
 
Mathematical model of the obstacle, depending on the 

track x is described by equation 
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where 
R is the radius of the circumscribed circle (Figure 2), 
d is the length of the obstacle and hm its height. 
In numerical simulation, the time dependence of the instantaneous obstacle height will be important 
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while v is considered vehicle speed and T is the ob-
stacle transit time [8]. 

Actual vehicle prototypes need to be tested on test cir-
cuits with different surfaces, as shown in Fig. 3. 

 

 

 

 

Fig. 3 Surfaces of different test circuits (source: inter-
net) 

 Random road inequality 

Very important is computer modelling of vehicles 



February 2018, Vol. 18, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

126  indexed on: http://www.scopus.com  

while driving on a stochastically uneven path. Generating 
such paths with prescribed power spectral density (which 
corresponds to paths of various kinds - from very uneven 
to very good quality routes) allows Shinozuka method.  

Road surfaces have a random (stochastic) profile of 
unevenness. The height of unevenness u is generally a 
two-dimensional random function of position in the plane 
of the path, which is given by the coordinates x in the lon-
gitudinal direction and z in the transverse direction. 
Unevenness can be described by function 

 ( ), .u u x z=  (4) 

One function record (4) is called realization. More re-
cords of this feature are a set of implementations. This file 
describes a random run, in this case the course of road 
unevenness. It is assumed that the random function of 
road inequality is a steady ergodic process, which means 
that the probability characteristics of this process do not 
depend on time and track and that only a sufficiently long 
realization is sufficient to determine these characteristics. 
The condition of steadiness and ergodicity is usually met 
as the observed section of the road is sufficiently long[9].  

3.1 Simulation of the road unevennesses by the sum 
of cosine functions with prescribed power spectral 
density (Shinozuka method) 

The basis of this method is the idea that each random 
stationary process can be represented by the sum of 
cosine functions. This method was developed in 1971 by 
Shinozuka. His theory can be found in Nigam [3]. 

Shinozuka's method can be described by the equation 
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where ωL  and ωU
 are the lower and upper limits for 

which the power spectral density ( )ωuS  acquires negli-

gible values. They are therefore given by the analysis of 
the particular problem solved. 

Power spectral density of path unevenness ( )ωu kS  

is given by equation 
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where is 

v - vehicle speed, 

0Ω  - reference circular frequency ( )1
0 1m ,−Ω =  

( )0ΩuS  - power spectral density of path unevenness 

for 1
0 1 m −Ω = . 

In equation (5) acquires ϕ k  random values with a uni-

form probability distribution in the interval [ ]0, 2π . 

In equation (7) δω k  is a small random frequency that 

acquires values with a uniform probability distribution in 

the interval ' '

2 2

ω ω
δω

∆ ∆ 
− < <  

k , while 'ω ω∆ << ∆ . 

Small random frequency δω k  is used to avoid the 

occurrence of periodicity of the generated random 
function. 

The method makes it possible to simulate the ride 
along this path with the prescribed power spectral density 
of the road unevenness ( )0ΩuS  – at any time t is pos-

sible to calculate the height of the inequality ( )u t  from 

equation (5). It is obvious that this calculation is ne-
cessary before the simulation of the vehicle dynamics it-
self, whereas in the simulation a displacement vector is 
needed ( )iu t  for it  (i =1, 2, 3, ...), where  

 1i it t t−= + ∆  (11) 

and ∆t  depends on the integration step that is used to 
solve the mathematical model of vehicle dynamics. 

 
Fig. 4 Stochastic path generated by the Shinozuka method 
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Fig. 4 shows the stochastic path that was generated by 
the Shinozuka method with input parameters 

( ) 6 3
0 22.10 m−Ω =uS (good asphalt-concrete path), 

120 m.s−=v . 

 Planar model of vehicle 

The mechanical model of a plane vehicle model is re-
presented by Fig. 5. 

 

Fig. 5 Planar model of vehicle
 

The mathematical model derived by the d'Alembert principle is 
 1 1 1 3 1 3 1 1 3 1 3 1 3 1 1( ) ( ) ( ) 0,m z b z l z k z l z k z uφ φ− + − − + − + − =ɺɺɺ ɺ ɺ   (12a) 

 2 2 2 3 2 3 2 2 3 2 3 2 4 2 2( ) ( ) ( ) 0,m z b z l z k z l z k z uφ φ− − − − + − + − =ɺɺɺ ɺ ɺ   (12b) 

 ( )3 3 1 3 1 3 1 2 3 2 3 2 1 3 1 3 1 2 3 2 3 2( ) ( ) ( ) 0,m z b z l z b z l z k z l z k z l zφ φ φ φ+ + − + − − + + − − − − =ɺ ɺɺɺ ɺ ɺ ɺ ɺ   (12c) 

 ( )3 3 1 1 3 1 3 1 2 2 3 2 3 2 1 1 3 1 3 1 2 2 3 2 3 2( ) ( ) ( ) 0,I bl z l z b l z l z k l z l z k l z l zφ φ φ φ φ+ + − − − − + + − − − − =ɺɺ ɺ ɺɺ ɺ ɺ ɺ   (12d) 

A system of equations of the first order is transformed 
 1 1 1 2 2 3 2 4 3 5 3 6 3 7 3 8, , , , , , , .φ φ= = = = = = = =ɺɺ ɺ ɺz y z y z y z y z y y y yz  (13) 

The mathematical model of the solved system as a system of ordinary differential equations of the first order, see 
Rahman (1991) [5] 

 ( ) ( ) ( )1 1 5 1 7 1 1 6 1 8 2 3 2 1
1

1
2 ,y b y l y y k y l y y k y y

m
 = + − + + − − − ɺ    (14a) 

 2 1 ,y y=ɺ               (14b) 

 ( ) ( ) ( )3 2 5 2 7 3 2 6 2 8 4 4 4 2
2

1
2 ,y b y l y y k y l y y k y u

m
 = − − + + − − − ɺ                (14c) 

 4 3 ,y y=ɺ               (14d) 

 ( ) ( ) ( ) ( )5 1 5 1 7 1 2 5 2 7 3 1 6 1 8 2 2 6 2 8 4
3

1
2 2 ,y b y l y y b y l y y k y l y y k y l y y

m
 = − + − − − − − + − − − − ɺ     (14e) 

 6 5 ,y y=ɺ                (14f) 

 
( ) ( ) ( )

( )
1 1 5 1 7 1 2 2 5 2 7 3 1 1 6 1 8 2

7
3 2 2 6 2 8 4

2 21
,

b l y l y y b l y l y y k l y l y y
y

I k l y l y y

 − + − + − − − + − +
=  

+ − −  
ɺ               (14g)

 8 7 .y y=ɺ               (14h) 

 
Fig. 6 to 9 show a progressive development of the cen-

troid T of the vehicle sprung mass Fig. 5, and its accele-

ration when crossing the „hat“ obstacle, respectively, dri-
ving on a stochastically uneven path. The Optimization 
Toolbox for Use with Matlab [4] was used for numerical 
analysis and optimization of the vehicle mechanical mo-
del parameters. 

 
Fig. 6 Displacement of the sprung mass centroid during crossing through the „hat“ obstacle 
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Fig. 7 Acceleration of the sprung mass centroid during crossing through the „hat“ obstacle  

 
Fig. 8 Displacement of the sprung mass centroid while driving on a stochastically uneven path 

 
Fig. 9 Acceleration of the sprung mass centroid while driving on a stochastically uneven path 
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Parameters of the vehicle mechanical model, determi-
nistic obstacles (of cylindrical shape) and vehicle speed 
when crossing the obstacle are: m1 = 110 kg, m2 = 118 kg, 
m3 = 1370 kg, I3 = 4192 kg.m2, k3 = k4 = 400000 N/m (tire 
stiffness), v = 11 m.s-1, hm = 6 cm, d = 2,68 m. When dri-
ving on a rough road stochastic parameters were used: 

( )0u
S Ω = 22.10-6 m3 and vehicle speed v = 20 m.s-1. Pa-

rameters of spring stiffness and shock absorber coeffi-
cients in the main suspension are: k1 = k2 = 35000 N/m, 
b1 = b2 = 1050 kg.m.s-1. 

 Conclusion 

The contribution analyzes and mathematically 
describes various types of kinematic excitation of vehi-
cles caused by either deterministic obstacles or a stochas-
tically uneven path. It is shown which deterministic ob-
stacles are suitable for simulation testing of transient 
events and also what obstacles are used on test circuits of 
prototype vehicles. It also describes a hat-shaped obstacle 
which, to a certain extent, respects the actual shape of the 
tire, although it can also be used for the point-to-point 
contact between the tire and the road. 

Planar vehicle model examines its passage over a hat-
shaped obstacle and its ride along a stochastically uneven 
path. 
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