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The paper deals with kinematic analysis and dimensional optimization of a wheel loader mechanism. The kinema-
tic analysis is based on the kinematic constraints of all joints in the mechanism. The objective function expresses 
the average angular displacement of the loader bucket and the optimization process leads to its minimum value. 
The wheel loader mechanism contains two hydraulic drives. The first drive is ensuring rotation of the boom (lifting 
the bucket) and the other rotation of the bucket. Optimization of the geometric dimensions of the wheel loader 
mechanism links gives their optimum values which ensure lifting the bucket with its negligible angular displace-
ment carried out by just one hydraulic drive for rotation of the boom. The other hydraulic drive ensuring rotation 
of the bucket is stopped during lifting the bucket. The optimization results confirmed the possibility of lifting the 
bucket with just one hydraulic drive for rotation of the boom.  
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 Introduction 

Wheel loaders,  Fig. 1, belong to the most spread mo-
bile working machines. They are used for excavation 
works and extraction of raw materials. Most of the wheel 
loaders produced nowadays have an integrated electronic 
corrective regulating system maintaining the horizontal 
position of the bucket during its lifting by means of the 
hydraulic drive carrying out rotation of the bucket. 

 
Fig. 1 Wheel loader 

 
Fig. 2 Wheel loader mechanism modelled in the com-

puter software SolidWorks 
 
In the paper the method of kinematic constraints of all 

joints in the loader mechanism, Fig. 2, is used to set up its 
mathematical model. Numerical solution of this model le-
ads to determination of the positions of the mechanismʼs 
links and geometrical points. This mathematical model is 
used for numerical optimization ([1] to [5], [7] and [8]) of 
the geometrical parameters of the wheel loader mecha-
nism links by means of the MATLAB Optimization To-
olbox [6]. 

 Kinematic analysis 

Fig. 3 represents scheme of the wheel loader mecha-
nism. The task of the kinematic position analysis is to de-
termine the relative rotational positions of the bucket 5, 
Fig. 3, during its lifting by means of the hydraulic drive 

6, while the distance of the driveʼs 7 end points EH is 
constant. This distance is determined in the lower (initial) 
position of the boom 2 so that the angular coordinate 5ϕ , 

determining the angular positioon of the bucket 5, ensures 
its horizontal position.  

The mechanism under investigation, with its kinema-
tic scheme in Fig. 4, has two degrees of freedom (DOF) 
with the input motions from the two hydraulic drives 6 
and 7. However, in the position kinematic analysis below, 
the angular coordinate 2ϕ , determining angular position 

of the boom 2, will be considered as the only input mo-

tion. As it was written above, the distance EH of the end 
points of the drive 7 is constant and determined in the 
lower (initial) position of the boom 2. 

As the optimization variables of the problem the 
following geometrical dimensions are chosen: 

1 GD≡x  the length of the link 4 (linkage), 

2 DC≡x  the length of the lower part of the 

link 3 (bucket bellcrank), 

3 γ≡ ∢x  the angular displacement between 

the lower and upper parts of the 
bucket bellcrank 3, 

4 CE≡x  the length of the upper part of the 

link 3 (bucket bellcrank), 

5 JC≡x  the distance determining position of 

the joint C on the boom 2, 

6 BG≡x  the distance between the joints B 

and G on the bucket 5, 

7 A J≡x  the distance between two points A 

and J on the boom 2. 
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Fig. 3 Scheme of the wheel loader mechanism 

 

Fig. 4 Kinematic scheme of the wheel loader mechanism 
 
Algoritmization and computer programming of this 

method is simpler compared to the vector method [11]. 
Another possibilities can be found in [14] to [16]. 

The configuration of the mechanical system is 

described by 15 coordinates (every body is assigned an 
identical set of three absolute Cartesian coordinates), 
which can be described in a vector form as 

 
T

11, 11, 1 12, 12, 2 13, 13, 3 14, 14, 4 15, 15, 5, , , , , , , , , , , , , , ,x y x y x y x y x yR R R R R R R R R Rϕ ϕ ϕ ϕ ϕ =  q  (1) 

where coordinates iϕ  are apparent in Fig. 4 and coordi-

nates 
ii, ii,,x yR R  determine positions of the origins of the 

mechanism links origins Oi expressed in the ground coor-
dinate system O1 , x1, y1. 

If the global and ground coordinate systems of the link 
1 are supposed to be identical, then the ground constraints 
are 
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The revolute joint O1 constraint (between the links 1 
and 2) is 

 
12 .=R 0  (3) 

The revolute joint O5 constraint is 

 
5 515 15 5,5 12 12 2,2 .O O+ − − =R S u R S u 0  (4) 

Because of =
55,5Ou 0   and 

1 2 =R 0  the following 

equation holds for the joint O5 constraint 

 
515 12 2,2 ,O− =R S u 0  (5) 

where the vector  
52,2Ou  is 

 
5

T

2,2 AB 0 .O
 =  u  (6) 

The revolute joint O4 constraint is 

 
4 414 14 4,4 15 15 5,5 ,O O+ − − =R S u R S u 0  (7) 

where is 

 
4 4

T

4 ,4 5 ,5a BG 0 .O O
 = = − u 0 u  (8) 

The revolute joint D constraint is 

 14 14 4,4 13 13 3,3 ,D D+ − − =R S u R S u 0  (9) 

where is 

 
T T

4,4 3,30 GD , 0 CD .D D
   = =   u u  (10) 

The revolute joint O3 constraint is 

 
3 313 13 3,3 12 12 2,2 ,O O+ − − =R S u R S u 0  (11) 

where for the vectors  
33,3Ou  and 2,2 3O

u  the following 

equations hold 

 [ ]
3 3

TT

3,3 2 ,20 0 , AJ JC .O O
 = = − u u  (12) 

Because of zero vectors 
33,3Ou and 

1 2R , eq. (11) is re-

duced to the form 

 
313 12 2,2 .O− =R S u 0  (13) 

The loader mechanism has 2 DOF. Therefore two 
further constraints formed by hydraulic drives are needed. 
Velocities as well as accelerations will not be needed. 

The constraint generated by the drive 6 can be formed 
by two ways. The simpler way will be used here which 
does need to take into account the length of the drive. The 
input motion of the boom 2 starts from 

minϕ  (the initial 

boom position) and stops at 
maxϕ  (the final boom posi-

tion), where  ( ) 22 ,ϕ π ϕ= −  with the step ϕ∆ . Using 

the angular coordinate ϕ instead of  
2ϕ  is more illustra-

tive (see Fig. 4). Mathematically this constraint is expres-
sed in the way 

 0,kϕ ϕ− =  (14) 

where ϕ k
 is expressing the constant value of the an-

gular coordinate ϕ  in the interval from 
minϕ  to 

m a x .ϕ   

Another constraint is expressing the constant len-

gth of the hydraulic drive 7 which equals to the length 

7l  of this drive (distance EH ) in the lower position of 

the boom 2 (
minϕ ϕ= )  for the horizontal position of 

the loader bucket. The length 
7l  can be expressed in 

the form 

 1 1 7E H l− =R R  (15) 

and for the vector 
1 ER  holds 

 = +
1 13 13 3,3

,
E E

R R S u  (16) 

or in the scalar form 

3 31 , 13,

1 , 13, 3 3

13, 3 3

13, 3 3

cos sin CEsin

sin cos CEcos

CEsin cos CEcos sin

CEsin sin CEcos cos

E x x

E y y

x

y

R R

R R

R

R

ϕ ϕ γ
ϕ ϕ γ

γ ϕ γ ϕ

γ ϕ γ ϕ

−       −
= + =      

−            

 − +
 =
 − − 

 (17) 

The vector 
1 HR   is 

 
1

AH
,

AH

x

H

y

 
 =
−  

R  (18) 

where AHx  a AH
y  are expressing the x- and y-compo-

nent of point H in the ground coordinate system. 

The last constraint  can be finally written in the form 

 
( )

( )

2

13, 3 3

2
2

13, 3 3 7

DEsin cos DEcos sin AH

DEsin sin DEcos cos AH 0.

x x

y y

R

R l

γ ϕ γ ϕ

γ ϕ γ ϕ

− + − +

+ − − + − =
 (19) 
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The total constraint vektor of the mechanism is  

 ( )

( )
( )
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2 2
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2
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y

O

O

D D

O

k

x x

y y

R

R

t
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ϕ ϕ
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 −
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R
R S u

C q R R S u

R S u R S u

R S u

,=








0  (20) 

This vector contains 15 scalar constraints with equal 
number of the unknown coordinates defined by eq. (1). 

For the iterative solution of the vector eq. (20) Newton-
Raphson method can be used. 

The constraint Jacobian matrix is derived in the form

 

6,6

7,6

8,15

9,15

10,9 10,12

11,9 11,1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 1

C

C

C

C

C C

C C

−=

−

−

−

qC

2

12,6

13,6

15,7 15,8 15,9

,

0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

C

C

C C C
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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 (21) 

where 

 6,6 2 7,6 2 12,6 2 2ABcos , ABsin , ACsin CDcos ,C C Cϕ ϕ ϕ ϕ= =− =− −  (22a) 

 13,6 2 2 10,9 3 11,9 3ACcos CDsin , DFcos , DFsin ,C C Cϕ ϕ ϕ ϕ= − = =  (22b) 

 10,12 4 11,12 4 8,15 5 9,15 5GFcos , GFsin , BGsin , BGcos ,C C C Cϕ ϕ ϕ ϕ=− =− = =−  (22c) 

 ( )15,7 13, 3 32 DEsin cos DEcos sin AM ,xC R γ ϕ γ ϕ= − + −  (22d) 

 ( )15,8 13, 3 32 DEsin sin DEcos cos MI ,yC R γ ϕ γ ϕ= − − +  (22e) 

 
( ) ( )

( ) ( )
15,9 13, 3 3 3 3

13, 3 3 3 3

2 DEsin cos DEcos sin AM DE sin sin cos cos

2 DEsin sin DEcos cos MI DE sin cos cos sin

x

y

C R

R

γ ϕ γ ϕ γ ϕ γ ϕ

γ ϕ γ ϕ γ ϕ γ ϕ

= − + − + +

+ − − + +
 (22f) 

If the constraint Jacobian matrix (21) is nonsingular 
then the first order approximation gives 

 ( ) ( ), , .i i it t∆ = −qC q q C q  (23) 
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This equation can be solved for the vector of Newton dif-
ferences .i∆q This vector can be used to iteratively up-

date the vector of the system coordinates as 

 1 .i i i+ = + ∆qq q  (24) 

The angular coordinate 
5ϕ in eq. (1) can be used to define 

the more illustrative angle β determining position of the 

bucket 5 in the form 

 5.β π ϕ= −  (25) 

 Formulation of the optimization problem 

The optimization goal consists in achieving optimal 
values of the optimization variables 1x  to 7x  which en-

sure lifting the loader bucket by means of the hydraulic 
drive for rotation of the loader boom holding its horizon-
tal position with sufficient accuracy. 

Lifting the bucket will be carried out in the interval of 
the input motion from 

minϕ  (the initial boom position) to 

maxϕ  (the final boom position) with the step ϕ∆ . If the 

desired value of the bucket horizontal position is denoted 
by β d

 then the objective function can be expressed in the 

form 

 ( )2

=1

1
,β β= −∑

N

op i d
i

f
N

 (26) 

where N is the number of the boom positions in which the 
value of  ( )β β−i d  is evaluated in the interval of mecha-

nism motion from 
minϕ  to 

m a x .ϕ  β i  is the actual value 

of the bucket angular displacement in the i-th step deter-
mined by the value of  

i m in .ϕ ϕ ϕ= + ∆i  The objective 

function (26) determines the average value of the diffe-
rence ( )β β−i d  in the interval from  

minϕ  to 
m a x .ϕ  

The optimization problem defined above does not 
need any restrictions (except so called natural restricti-
ons) because the lower and upper bounds of the opti-
mization variables are relatively closed to the geometric 
dimensions of the Caterpillar 950 wheel loader. 

Similar optimization algorithms for optimization of 
various kinds of mechanisms were used in [9] and [10]. 
In [11] and [12] not only geometrical but also mechanical 
parameters of mechanisms were optimized and some re-
strictions were taken into account. 

 Results of optimization 

In Table 1 the units, lower and upper bounds and op-
timum value of all optimization variables are given.

Tab. 1 Optimization variables and their optimal values 
Optimization variable Units Lower bound Upper bound Optimal value 

1 GD≡x  m 0.35 1.30 0.818906 

2 DC≡x  m 0.25 0.95 0.671304 

3 γ≡ ∢x  rad -0.17 1.2 0.039287 

4 CE≡x  m 0.09 0.60 0.335932 

5 JC≡x  m 0.09 0.9 0.884922 

6 BG≡x  m 0.30 0.55 0.35 

7 A J≡x  m 0.95 1.55 0.967387 

 
Fig. 5 Difference between the desired and actual value of the bucket angular position 
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The objective function 
opf  (26) was evaluated in each 

optimization iteration from 45ϕ = °  to 130ϕ = ° with the 

step 1 .ϕ∆ = °  The number of evaluated mechanism posi-

tions is N = 86. The results of optimization are characte-
rized by the optimum values of the optimization variables 
given in Tab. 1. The value of the objective function is 

0.012455 rad=opf  (0.714º) which determines the 

average value of the difference between the desired and 
actual value evaluated in the interval from 

minϕ  to 

m a x .ϕ Fig. 5 shows the dependence of the difference 

between the desired and actual value of the bucket angu-
lar position and .ϕ  The maximum value of the diffe-

rence is in the upper bucket position max 130ϕ = °  and is 

( )max
2.17 .β β− = °d  This value is fully acceptable 

from the practical point of view. 

 Conclusion 

The results of optimization showed that it is possible 
to find such values of geometric dimensions of the wheel 
loader mechanism that lifting the loader bucket can be 
carried out by just one hydraulic drive (for rotation of the 
loader boom). Thanks to this fact the integrated electronic 
corrective regulating system maintaining horizontal posi-
tion of the bucket during its lifting is not needed. 
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