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Based on analysis of joint dynamic characteristics to obtain dynamic values of combined surface incorporating 

joint dynamic data, a method for dynamics modeling of machine tool considering joint dynamic characteristics is 

developed and analyzed. The machine tool is simplified and modeled by selecting the motion coordinates of each 

component in accordance with the structure characteristics and the vibration displacement for each component in 

exciting test. According to the way and condition of the joints, the equivalent dynamic parameters of each joint 

are determined by applying the general joint surface dynamic data. Calculation methods of dynamic parameters 

for some typical joints in machine tool structures are analyzed and described. Taking a horizontal milling machine 

as an example, the machine is simplified into a dynamic model with 21 degrees of freedom, the calculated results 

of dynamic characteristics correspond to that of exciting test and modal analysis. The modeling method is effective 

and applicable in machine tool design and structure improvement.  
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 Introduction 

To establish the dynamic model that simulates the ma-
chine tool structure is the requirement to analyze the dy-
namic characteristics and realize optimum design. For 
complex machine tool structure, it is still difficult to ob-
tain the dynamic model in physical coordinates due to the 
existence of various joints [1-5]. By simplifying machine 
tool to a certain extent in different ways, a lumped para-
meter model, a beam distributed model or a finite element 
model is established correspondingly [6,7], the modeling 
is limited by the difficult to identify the joints parameters, 
and the modeling accuracy is not up to the requirement of 
dynamic optimization[8,9]. Based on the theory of expe-
rimental modal analysis and using experimental data, the 
modal model for machine tool is established [10,11]. 
With the development of experimental modal analysis 
technology, although it is convenient to determine the 
modal mass, modal stiffness and modal damping ration of 
each modal of machine tool, as viewed from design im-
provement and optimum design, the obtained modal mo-
del could not related directly to the specific design impro-
vement and optimum design[12,13], only some approxi-
mately concussions can be obtained. On the contrary, the 
dynamic model in physical coordinates is convenient and 
direct in point of this. 

Based on analysis of joint dynamic characteristics, a 
method of modeling the dynamic model in physical coor-
dinates of machine tool considering joint dynamic cha-
racteristics is explored. The motion coordinates for each 
component are decided according to the characteristics of 
structure and displacement for each component in ex-
citing test of machine tool. The dynamics equations of 
machine tool are obtained by the second type of Lagrange 
equations. Dynamic parameters for some typical joints in 
machine tool structures are analyzed and the equivalent 
parameters of each joint are determined by applying the 
general joint surface dynamic data. 

 Dynamic model of horizontal milling machine 

The horizontal milling machine is a middle-sized pro-
duct with broad versatility, shown in Fig. 1. In accordance 
with the structural features and distributions of this ma-
chine, it is divided into eight parts: (1) Bed (including bot-
tom base); (2) Horizontal spindle body (including main 
motor, motor stand and vertical spindle body); (3) 
Crossbeam; (4) Hanger; (5) Horizontal cutter arbor; (6) 
Horizontal table; (7) Vertical table; (8) Compound slide. 

Compound slide fits bed with rectangular slideway. 
Between horizontal spindle body and bed, crossbeam and 
horizontal spindle body, hanger and crossbeam as well as 
vertical table and compound slide are all fitted each other 
with dovetail slideway. Horizontal table and vertical table 
are joined by four bolts. 

 

Fig. 1 Structure diagram of horizontal milling machine 

 
In accordance with the characteristics of displacement 

in exciting test of the machine tool, the machine is repre-
sented by a dynamic model involving lumped and distri-
buted masses with 21 degrees of freedom. By applying 
the second type of Lagrange equations[14], the differen-
tial equations of machine tool are obtained as follows 
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Where: T...the total kinetic energy of the system, jq
...the generalized coordinate of the system, U...the total 
potential energy of the system, D...the Rayleigh energy 
dissipation function, and 

jQ ...the exciting force. Accor-

ding to the dynamic model, T, U and D of the structure 
are calculated, substitute T, D, U in equation (1), then we 
obtain 

 21 21 21 1 21 21 21 1 21 21 21 1 21 1( )t× × × × × × ×+ + =ɺɺ ɺM q C q K q F   (2) 

 
Where, M  denotes the mass matrix, C is damping 

matrix and K  is the stiffness matrix, while q  is the co-
lumn matrix of generalized coordinates and ( )tF  is the 

column matrix of exciting forces. 
Masses of each component involved in the model are 

found by weighing actual structures. By the principle of 
compound pendulum, moments of inertia are determined 
by measuring the oscillation frequency in gravity field, 
while neglecting the effect of friction moment on the edge 
of the blade bearing. 

 Analysis of joints dynamic characteristics 

The dynamic characteristics of the joint have a signi-
ficant influence on the dynamic performance of machine 
tool [15,16]. The identification of the dynamic parameters 
of joint is the basis and premise for the accurate esta-
blishing of the whole machine tool dynamic model. Based 
on analysis of characteristics of joints, by applying the 
general joint surface dynamic data ( )i nk P  and ( )i nc P (i = 

1, 2)[3,17], the equivalent spring stiffness and viscous 
damping coefficients of each joint in the model are ana-
lyzed. ( )i nk P  and ( )i nc P  (i = 1, 2) denote equivalent 

spring stiffness and damping coefficient values per unit 
area, which are obtained by experiment and  computer si-
mulation. They are functions of contact pressure. Sub-
scripts (i = 1, 2) represent shear direction and normal di-
rection respectively. It is confirmed that the joint dyna-
mics data ( )i nk P  and ( )i nc P  (i = 1, 2), which depend on 

the mean contact pressure, can be applied satisfactorily to 
general joints which have the same contact surface pro-
perties but differ in shape and contact area. 

There are various joints in machine tool structure, 
with fixed and sliding of joint ways, as well as with sur-
face contact, rectangular slideway and dovetail slideway 
of joint patterns, and with different forces state. In order 
to identify the dynamic parameters of these joints by 
using general joint surface dynamic data, the forces on 
contact surface should be analyzed for different joints. 

For a contact surface, the forms of dynamic force 
supported on contact surface are determined by modal 
shapes. The contact surface can be supported six different 
forms of dynamic forces, which are generalized forces 
over six coordinates as shown in Fig. 2. These dynamic 

forces are normal force
yF  along axis y and shearing 

force ,x zF F  along axis x and z, bending moment 

,x zM Mθ θ  around axes x and z, and shear bending mo-

ment 
yM θ around axis y. The contact surface may be 

supported all of them or any of these forces. Integral over 
area replaced by the point G, the equivalent spring stiff-
ness and damping coefficients at point G are obtained as 
indicated in the following equations: 

 
Fig. 2 Diagrammatic sketch of the forces on contact sur-

face 
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Based on the equation (3), for dovetail slideway joint, 
shown in Fig. 3, the equivalent spring stiffness at point G 
can be derived by calculating the spring stiffness around 
point G as follows 

 

Fig. 3 Dovetail slideway joint 
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For rectangular slideway joint shown in Fig. 4, the 
equivalent spring stiffness at point G can be derived as 

follows.
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Similarly, the equations for calculating the equivalent 
damping coefficients are derived. In the first subscripts 
D, H, E, T correspond to the joint surface , ,D H ES S S  and

TS , while the second subscripts , , , , ,x y zx y z θ θ θ corre-

spond to the directions of six coordinates respectively. 
By applying above equations, the equivalent spring 

stiffness coefficients in the model are calculated, and the 
results for equivalent spring stiffness of joints are displa-
yed in Table 1. 

 
Fig. 4 Rectangular slideway joint 

Tab. 1 The values of equivalent stiffness of each joint 

Joint Stiffness˄N/m; N·m/rad˅ Joint Stiffness˄N/m; N·m/rad˅ 

Joint of bed and horizon-
tal spindle body 

xKķ  87.642 10×  
Crossbeam and hanger xKθ

Ĺ  67.366 10×  

xKθ
ķ  73.629 10×  

zKθ
Ĺ  71.164 10×  

zKθ
ķ  75.473 10×  Horizontal table and 

vertical table 
xKļ  92.512 10×  

Bed and compound slide 
xKľ  83.829 10×  

zKļ  92.512 10×  

Horizontal spindle body 
and crossbeam 

xKĸ  82.012 10×  
Vertical table and com-
pound slide 

xKĽ  57.218 10×  

xKθ
ĸ  66.725 10×  

xKθ
Ľ  74.538 10×  

zKθ
ĸ  71.054 10×  

yKθ
Ľ  74.341 10×  

Note: In the table the unit of line stiffness is N/m; and angular stiffness is N·m/rad. 

 Dynamic characteristics computation and 

modal analysis 

Solving the eigenvalue problem of equation (2), the 
characteristic equation is as follows 

 
2

i i iω=K Mφ φ   (7) 

Where iφ  is  r-order eigenvector, the natural frequen-

cies 1 2 21, , ,n n nω ω ω⋯  and vibration vectors 1A ，
2A ，…

,
21A  of the structural system can be obtained respectively 

by solving above equation.  
The actual cutting conditions are simulated approxi-

mately by the relative exciting shown in the Fig. 5. In the 
case of relative exciting between cutter and workpiece, a 
pair of equal and  opposite force i t

eF e ω−  at the point of 

horizontal cutter arbor  and i t
eF e ω  at the point  of horizon-

tal table are applied along the direction of α angle, i t
eF e ω−  

and i t
eF e ω  are decomposed into a pair of orthogonal forces 

along the axis x and z respectively. Thus, the exciting 
force column matrix can be expressed as
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12 13 16 17( ) [00000000000, , , 00, , , 0000]i t i t i t i t i t

e x e z e x e zt F e F e F e F e eω ω ω ω ω= − − =F F    (8) 

Denoting tool-workpiece relative displacement in the 
direction normal to machined surface by cX , in accord-

ance with theory of modal analysis, the compliance of 

cutter-workpiece at cutting point can be derived as fol-
lows 
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Where: ( )
1 2

rA , ( )
1 3

rA , ( )
1 6

rA , ( )
1 7

rA …the r-order modal 

vectors corresponding to the generalized coordinate 12q , 

13q , 16q , 17q ; rK …the r-order modal stiffness; rξ …the 

r-order modal damping ratio; ω , nrω …exciting freque-

ncy and the r-order natural frequency; α …the included 
angle between exciting force i t

eF e ω  and horizontal di-

rection. 
The modal damping ratio rξ   used in calculation is ob-

tained by analyzing the machine tool relative pseudo-ran-
dom exciting test data processing by analyzer 7T17S. Ta-
ble 2 compares the modal frequencies in relative pseudo-
random exciting with computed natural frequencies. Fig. 
6 shows the vibration modal shape of the main modes of 
151.4Hz and 187.7Hz. Fig. 7 compares the computed 
frequency response at cutting point with that of exciting 
test. The dotted lines indicate the computed results, while 
the solid line is the relative harmonic exciting results. The 
correspondence between the calculated results and the 
measured results indicates that the dynamic analytic mo-
del established is in line with the experimental situation, 

and the model well simulates the dynamic characteristics 
of machine tool. 

 
Fig. 5 Diagram of exciting force

Tab. 2 Comparison between natural frequencies and modal frequencies 

Modal 
order 

Computed re-
sults 

Experimental value 
Modal 
order 

Computed re-
sults 

Experimental value 

Natural fre-
quency(Hz) 

Modal      fre-
quency(Hz) 

Modal 
damping 
ratio 

Natural            
frequency(Hz) 

Modal      fre-
quency(Hz) 

Modal 
damping 
ratio 

1 17.586 17.678 0.139 9 301.210 300.094 0.0250 

2 39.154 —— —— 10 365.411 372.533 0.0134 

3 64.301 65.048 0.0384 11 410.936 410.122 0.0244 

4 109.278 123.908 0.0503 12 460.676 —— —— 

5 156.286 151.379 0.0412 13 470.350 —— —— 

6 192.470 187.650 0.0399 14 491.494 491.328 0.0178 

7 266.715 —— —— 15 526.796 533.787 0.0117 

8 279.518 —— —— 16 1146.472 990.003 0.00253 
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Fig. 6 Vibration modal shape of machine tool 

 
Fig. 7 Computed and measured results of the relative compliance 
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 Conclusions 

1. The method to establish the dynamic model of ma-
chine tool structure considering joint dynamic characte-
ristics is feasible and applicable to engineering. 

2. The dynamic model established well simulates the 
dynamic characteristics of the actual structure, the com-
puted results agree with that of exciting test and modal 
analysis. 

3. The Lagrangian equation based on the energy prin-
ciple is used to establish the motion equation of machine 
tool structure, which is convenient to calculate the energy 
distribution and proportion of each component in the sys-
tem, and provides the basis for the subsequent dynamic 
optimization design and structural improvement. 
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