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A Matlab-based calculation method which can be used to partition a free-form surface into regions is presented in 
this paper. Based on surface curvatures and Freeman chain code technique, a free-form surface can be devided 
into convex, concave and saddle regions. A Matlab program containing some M-function and script files was de-
veloped to create the mathematical model of the free-form surface, calculate the surface properties, and find the 
points on the boundaries of the regions. Two surfaces were given as examples to show that the program runs well 
and output of the program was used to create the CAD (Computer Aided Design) model of the partitioned surface 
in Creo Parametric. 
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 Introduction 

Parts with free-form surfaces, also called sculptured 
surfaces, have become the reality of series production in 
industry when CAD systems and modern scanning instru-
ments entered the re-engineering process [1]. This kind of 
surface is designed to meet aesthetic or functional requi-
rements [2]. Generally, a free-form surface can contain 
plane, convex, concave, and saddle regions [3, 4]. Free-
form surfaces can be are machined on 3-axis numerical 
control (NC) machines using ball-end cutters or on 5-axis 
NC machines using either ball-end cutters, toroidal cut-
ters or flat-end cutters. Regardless of which machining 
axis mode is used (3- or 5-axis), the machining producti-
vity will be low if only one cutter is used over the entire 
surface This is due to tool size limitations. For a distinct 
surface, the tool diameter is restricted by a determined va-
lue that must not cause local gouging when milling 
concave or saddle regions. Therefore, if a free-form sur-
face is partitioned by its different regions, separate and 
suitable tools can be used to machine each region to im-
prove the overall machining efficiency. [4, 5] 

Surface partitioning is a method which can be utilized 
to partition a surface into sub-patches. Some studies per-
formed surface partitioning without using surface curva-
tures, while others used surface curvatures for surface 
partitioning. The followings are some studies which utili-
zed surface curvatures as the main parameters to devide a 
surface into separate regions. 

To compute curvature properties, Elber and Cohen [6] 
developed a hybrid method using symbolic and numeric 
operators. Giri et al. [7] divided a free-form surface into 
regions where the boundaries were the loci of extreme 
curvatures. In the work of Chen et al. [8] the fuzzy C-
means method and Voronoi diagram were used to per-
form the surface subdivision and Fuzzy Logic Toolbox in 
Matlab was used for programming. The fuzzy C-means 
method was also selected and implemented for surface 
partitioning in [9, 10, 11, 12]. In the study of Bey et al. 
[13], the design surface was first approximated into trian-
gles, then normal vectors and curvatures were calculated 

to identify the local shape of every vertex. The vertices 
were then grouped into distinct regions of convex, 
concave or saddle. C++ and Open GL were used for im-
plementation. C++ was also used for programming by Liu 
et al. [12] and Li and Zhang [14, 15] to divide free-form 
surfaces into regions based on surface curvatures. Li et al. 
[16] introduced a three-step method for surface partitio-
ning with relevance criteria. They used Matlab to analyze 
and calculate. A tensor-based method was presented by 
Liu et al. [17] to divide a free-form surface into sub-regi-
ons, considering both the surface geometry and the cutter 
shape. Visual Studio was used to develop the proposed 
method. 

Although the methods mentioned above were all suc-
cessfully implemented, some of them were rather compli-
cated and required a high level of calculation and pro-
gramming for implementation. In the authors’ previous 
work [18], a simpler but effective method for surface par-
titioning was proposed. This method was also adopted by 
Shiv et al. [19]. Here, a free-form surface could be partiti-
oned into plane, concave, convex, and saddle regions, 
based on surface curvatures. The boundaries of each re-
gion were defined by using the chain codes method and a 
Matlab program was developed to do the calculations. 
This paper presents the Matlab-based calculation method 
used for free-form surface partitioning. [20, 21] 

 Surface geometry 

Given a free-form surface S(u,v) = [Sx(u,v), Sy(u,v), 
Sz(u,v)]. The followings are some geometric parameters 
of a surface. 

The unit normal vector at a point (u,v) can be calcula-
ted [13], see (1): 

 ( , ) ( ) /u v u vn u v S S S S= × ×  (1) 

where Su and Sv are the tangent vectors along u and v 
parametric directions. 

The Gaussian curvature (K) and the mean curvature 
(H) at a point on the surface are formulated as [13], see 
(2) and (3): 
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where E, F, G, L, M, and N are the parameters of the first 
and second fundamental forms, see (4).
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The property of the local surface shape around the 
point can be divided into four different types as follows 
[11]: 

(a) K = 0 and H = 0: local surface shape is planar, 
(b) K ≥ 0 and H > 0: local surface shape is 

concave, 
(c) K ≥ 0 and H < 0: local surface shape is con-

vex, 
(d) K< 0 and H < 0 or H > 0: local surface shape 

is saddle. 

 Matlab-based calculation for surface partitio-
ning  

In this study, based on the Gaussian curvatures, the 
mean curvatures and the Freeman chain code technique, 
a practical method to partition a free-form surface into 
concave, convex (including planar regions), and saddle 
regions was proposed. The method consists of three 
stages as shown in Fig. 1. Some Matlab functions and 
script files were developed to create a program for surface 
partitioning. The input data is the mathematical model of 
a free-form surface. The main output of the program inc-
ludes the 3D coordinates of points on the design surface 
and 3D coordinates of points on the boundaries of the re-
gions.  

 

Fig. 1 Flowchart for free-form surface partitioning 
 
Sampling points mean the mathematical model of a 

free-form surface is first developed. This model can be an 
explicit equation or a B-spline surface which uses control 
points as input data. In the first stage, the points with their 
3D coordinates on the surface are created to get a set of 
grid point. The grid is equally spaced in both u and v di-
rection with a distinct density. In the Matlab program, the 
explicit equation was directly expressed by some 
commands in a script file. In the case B-spline surface, 
some M-function files were developed.  

In the second stage (Clustering), the points on the sur-
face are clustered into different groups based on their pro-
perties. Firstly, Gaussian curvature, and mean curvature 
are calculated at every grid point on the surface. Secon-
dly, based on the values of K and H, the grid points are 
stored in a matrix named M. Matrix M is a rectangle array 
of numbers arranged in rows and columns. Each number 
in matrix M expresses a point on the surface and is coded 
by the number 1, 2 or 3 based on whether the point 
belongs to concave, convex, and saddle regions, respecti-
vely. The number of rows and columns in matrix M equ-
als the number of points in both parametric directions. 
Lastly, to prepare data for the next stage, a special tech-
nique is applied to convert matrix M into three matrices 
named M1, M2, and M3, which contain points on the 
concave, convex, and saddle regions, respectively. 

In this stage (Clustering), two M-function files are 
used for calculating the surface properties and clustering 
points into regions. The first M-function file performs the 
following tasks: 

• Calculating the unit normal vectors, based on 

Equation (1). 

• Calculating the fundamental magnitudes of the 

first order and the second order, based on 

Equation (4). 

• Calculating Gaussian curvatures, based on 

Equation (2). 

• Calculating mean curvatures, based on Equation 
(3). 

The second M-function file codes and stores points 
with the same properties in matrix M, then converts 
matrix M into three matrices M1, M2, and M3. These 
tasks can be performed by applying 2 algorithms as 
follows: 

Algorithm 1: code and store points which have the same 
properties 

FOR each grid point Pi,j of the set point {P} 
IF K(i, j) ≥ 0 and H(i,j) > 0  

THEN M(i,j) = 1 {code and store points of 
concave regions} 

Index the location of the corresponding point 
END IF 
IF K(i, j) ≥ 0 and H(i,j) ≤ 0  

THEN M(i,j) = 2 {code and store points of 
convex regions} 

Index the location of the corresponding point 
END IF 

Defining boundaries
3D points for

CAD modelling
Sampling points

Math. model of a
free-form surface Clustering
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IF K(i, j) < 0 and H(i,j)  ≠ 0  
THEN M(i,j) = 3 {code and store points of sad-

dle regions} 
Index the location of the corresponding point 

END IF 
END LOOP 

Algorithm 2: convert M into  M1, M2, and M3 
Mk = M { k = 1, 2, 3} 
FOR each element of matrix M 

IF M(i,j) ≠ k THEN Mk(i,j) = 0 
END IF 

END LOOP 
 
It can be seen that matrices M1, M2, and M3 have the 

same size as that of matrix M. In matrices M1, M2, and 
M3, the points on the surface of the same region are ex-
pressed by 1 or 2 or 3, and the other points of other regi-
ons are presented by 0. With this characteristic, matrices 
M1, M2, and M3 can be considered as matrices of binary 
images which have only two possible values for each pi-
xel. In this case, non-zero elements are the pixels of the 
objects in a binary image and zero elements are the pixels 
of the background.  

In the third stage, the Freeman chain code technique 
is used to determine the boundary points of the regions on 
the surface. In image processing, the Freeman chain code 
can be used to represent object boundaries on a binary 
image by connecting pixels on the boundaries in straight-
line segments [18]. The chain code consists of a sequence 
of integers which represent the location of the correlative 
pixels.  

Gonzalez et al. [19] presented an M-function for fin-
ding the boundaries of objects in a binary image based on 
the Freeman chain code as follows, see (5): 

 B = boundaries(f, conn, dir) (5) 

In Function (5), f is a binary image, conn has a value 
of 4 or 8 (the default) that defines the desired connectivity 
of the output boundaries, dir defines the direction in 
which the boundaries are traced in a clockwise (the de-
fault) or counter clockwise direction, and output B is a 
cell array that contains the coordinates of the points on 
the boundaries. In this study, f represents matrices M1, 
M2 and M3, the values of conn and dir can be set to the 
defaults.  

By executing Function (5), the number of objects in 
the image and number of boundary pixels (with indexed 
row and column coordinates) for the corresponding ob-
jects can be obtained. This means that the locations of the 
points on the region boundaries of the surface can be de-
fined in both parametric directions. However, the 3D 
coordinates of the boundary points cannot yet be defined. 
Therefore, in the script file, after the command that 
executes Function (5), additional commands are needed 
for further processing to retrieve the 3D coordinates of 
the boundary points. The boundary points are then saved 
in cell arrays named PB1, PB2, and PB3 which contain 
points on the boundaries of concave, convex, and saddle 
regions, respectively. 

 Application 

A number of examples were carried out in our re-
search. In this paper, two typical cases are presented for 
the purpose of demonstration.  

Tab. 1 shows a 5 × 4 control net of the B-spline sur-
face to be partitioned. The uniform knot vectors in u and 
v directions are [0 1 2 3 4 5 6 7] and [0, 1, 2, 3, 4, 5, 6], 
respectively.  

Tab. 2 Control net of a B-spline surface 
(0,0,75) (0,25,50) (0,50,100) (0,75,75) 
(25,0,0) (25,25,50) (25, 50,25) (25,75,50) 
(50,0,0) (50,25,75) (50,50,50) (50,75,75) 
(75,0,0) (75,25,50) (75,50,25) (75,75,50) 

(100,0,0) (100,25,25) (100,50,25) (100,75,50) 

 

Fig. 2 Structure of matrix M 

 

Fig. 3 Structure of matrix M2 
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By executing the Matlab program developed in the 
study, the points on the design surface and the points on 
the boundaries could be obtained. The points on the de-
sign surface were used to modelling the original of the 
surface, while the boundary points were used to create the 
boundary curves in CAD environment. To achieve a high 
accuracy of the boundary curves, a high density of grid 
points should be performed. However, for a better 
illustration of the structure of matrices M1, M2, and M3, 
a grid of points of 10×10 is introduced in this section. The 
following figures show the main output of the program. 

Fig. 2 shows the structure of matrix M (size 10×10). 
In this matrix, numbers 1, 2, and 3 denote the points 
which belong to concave, convex, and saddle regions, re-
spectively. It can be seen that there is 1 concave region 
(18 points), 2 convex regions (27 points) and 1 saddle re-
gion (52 points) on the surface. Matrix M was then con-
verted to matrices M1, M2, and M3. Fig. 3 presents the 
converted structure of matrix M2 as an example. 

One of the most important output sets of the Matlab 
program is the 3D coordinates of the boundary points. 
Fig. 4 represents the structure of the cell arrays which 
contain the 3D coordinates of the boundary points for 
each region. In these cell arrays, column 1, 2, and 3 indi-
cate the coordinates of x, y, and z of the Cartesian coor-
dinate system, respectively. Cell array PB1 contains 13 
points on the boundary of the concave region whereas cell 
array PB3 has 52 points on the boundary of the saddle 
region. The two convex regions have 12 points for each 
boundary which are stored in cell arrays PB2cell{1,1} 
and PB2cell{2,1}. However, the convex and concave re-
gions share the same boundary with the saddle region. For 
modelling of a free-form surface in CAD systems, the 
boundaries of the concave and convex regions can be em-
ployed for surface partitioning, while the boundaries of 
the saddle regions can be ignored. The Matlab figure of 
the surface with the plotted points on the boundaries is 
presented in Fig. 5.

 

Fig. 4 Examples of points on the boundaries of concave, convex, and saddle region

 
Fig.5 Matlab figure of the B-spline surface and 

points on the boundaries of regions 
 
The 3D coordinates of the points of the surface and 

the boundary points obtained by executing the Matlab 
program can be saved as Excel files. Once the coordinates 
are obtained, the boundary curves can be easily created 
along with the CAD model of the design surface in CAD 
environment. In this study, Creo Parametric 3.0 was used 
for modelling the design surface. Fig. 6 shows the CAD 
model of the original surface with the boundary curves. 
The input data for CAD modelling were obtained by 

sampling points with a grid point of 50×50 in two para-
metric directions. The boundary curves were used as trim 
factors to split the design surface into separate regions. 
The partitioned surface is illustrated in Fig. 7. Once achie-
ving the design surface with separate regions, the tool 
paths for each region can be generated by different stra-
tegies. An example of the tool paths for 5-axis machining 
with different tools for each partitioned surface is shown 
in Fig. 8. 9 and 10. 

 
Fig. 6 B-spline surface created in Creo Parametric – 

original surface and region boundaries 
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Fig. 7 B-spline surface created in Creo Parametric – 
partitioned regions: 1- concave region, 2- saddle region, 

3- convex region 

 

Fig. 8 5-axis tool paths for partitioned surface – milling 
2 concave regions by a 12 mm ball-end mill 

 

Fig. 9 5-axis tool paths for partitioned surface – milling 
the saddle region by a 16 mm ball-end mill 

 

Fig. 10 5-axis tool paths for partitioned surface – 
milling the convex region by a 12 mm flat-end mill 

 
In this study, the calculation for surface partitioning 

was performed with Matlab 2011b. The Matlab program 
developed in this research was run on a notebook (Intel 
Core i5-3337U, 1.8 GHz CPU, 4GB of RAM), operating 
under Microsoft Windows 10. When the grid of the de-
sign surface was set to 10x10, the running time of the pro-
gram was 0.51 seconds. When the grid was set to 50×50 
and 200×200, the executive time of the program was 0.81 
seconds and 11.75 seconds, respectively. The higher the 
density of the grid, the longer the running time. Although 
running time did not present a problem in the current re-
asearch. It may be of concern if a larger, more complica-
ted surface is introduced.  

Fig. 11 illustrates the Matlab figure of a surface ex-
pressed by function (6). This surface has 1 convex region, 
1 concave region and 1 saddle region. Its CAD model is 
shown in Fig. 12 and 13. 

 
2 2 2[( ) ] = x y yz e− − +−  (6) 

 

Fig. 11 Matlab figure of surface 
2 2 2[( ) ] = x y yz e− − +−

and points on the boundaries 
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Fig. 12 Surface 
2 2 2[( ) ] = x y yz e− − +− created in Creo 

Parametric – original surface and region boundaries 

 

Fig. 13 Surface 
2 2 2[( ) ] = x y yz e− − +− created in Creo 

Parametric – partitioned regions, 1- concave region, 2- 
saddle region, 3- convex region 

 
From these applications, it can be realized that the 

proposed Matlab program can be successfully implemen-
ted to obtain points on the boundaries of the regions of 
the design surface. These points can be used for surface 
partitioning purposes in Creo Parametric. This program 
can be expanded to apply to other kinds of free-form sur-
faces such as Bezier and NURBS if M-function files for 
creating a mathematical models of those kinds of surfaces 
are developed. However, in practice, the free-form sur-
face of a sculptured part may consist of many patches, and 
each patch can be represented in any form. If the Matlab 
program can handle a composite surface, this could 
lead to more realistic applications and thereby applicati-
ons that are more meaningful in practice. 

 Conclusion 

In this paper, a Matlab program was developed to do 
the calculating task for free-form surface partitioning. In 
the program, two special algorithms were used to cluster 
points on the surface into different groups based on sur-
face curvatures, and make the matrices of the clustered 
points available to use the Freeman chain code technique 
in the image processing field. Hence, the points on the 
region boundaries can be determined. The developed pro-
gram can be used effectively to partition a free-form sur-
face in the form of an explicit equation or a B-spline sur-
face into convex, concave, and saddle regions. The output 
data of the program can be used in Creo Parametric or 

other CAD packages to create the CAD model of the sur-
face with separate regions. Developing the Matlab pro-
gram which can divide a composite free-form surface into 
regions is a consideration for future work.  
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