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The article deals with analytical and experimental solution of vertical oscillations of a mechanical system 
of bound bodies. The content of the article is to perform an analytical solution of the vertical oscillation 
of a system of bodies using the computer program MathWorks Matlab and MS Excel. Furthermore, an 
experimental investigation on a laboratory model of a mechanical system of the same parameters was 
proved. The aim of the work was to compare the analytical solution with the experimental method and 
to check the accuracy and applicability of analytical methods for the solved mechanical system. 
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 Introduction 

Oscillations can be observed with most technical 
devices. This oscillation can cause many situations 
where the service life of the equipment is reduced or 
the operation of these equipment is accompanied by 
annoying noise. In the case of means of transport 
(cars, rail vehicles), limiting the service life and functi-
onality of technical equipment is an unpleasant matter, 
mainly due to the threat to human health and life. A 
similar case occurs, for example, in building structures, 
where there is a risk of the structure collapsing due to 
repeated vibrations. 

The concept of oscillations of mechanical systems 
can be imagined the process of various physical chan-
ges (deviations, velocities, accelerations, forces) in 
time, which is characterized by increasing or decrea-
sing these values. The total energy of the system takes 
over the kinetic and potential energy alternately. If the 
oscillation in the system is to last continuously, the 
condition is a continuous supply of energy. 

Analytical, experimental and numerical methods 
are used to solve the problem. New numerical met-
hods, along with greater computer performance, help 
more reliably predict the in-service behavior of ma-
chine and system models. The basic condition for suc-
cess is the construction of a structurally correct com-
putational model of a real mechanical system. The 
mathematical description of this system is expressed 
by a mathematical model. The physical parameters of 
the model can only be determined with limited ac-
curacy. To create mathematical models, it is necessary 
to identify some parameters based on the results of 
experiments [1-4]. 

Often the problem of oscillations is investigated on 
quarter models, elastically bound, or with dissipative 

elements, with different numbers of bodies, ie. with 
models with more degrees of freedom. When applying 
the quarter model, two axes of symmetry of the system 
are assumed, which means complete symmetry of the 
system and its kinematic excitation. The influence of 
asymmetry of mechanical systems has not been suffi-
ciently investigated so far. In the literature, solutions 
can be found for spatial half or planar models of me-
chanical systems, where planar symmetry can be as-
sumed. The complete asymmetry of mechanical sys-
tems must therefore be investigated on spatial models 
[5]. 

Countless publications and textbooks of technical 
disciplines are devoted to the basics of the issue of 
body oscillations, which follow the work of scientists, 
engineers and authors of basic theoretical works on 
the oscillation of mechanical systems. 

Slavík et al. [6] describe modern methods of 
mathematical modeling of properties and reactions of 
dynamically loaded systems of bodies. The authors 
also describe the method of compiling equations of 
motion of systems of rigid bodies. There are also do-
cuments for dimensioning machines and their stren-
gth calculations. 

Soukup et al. [7] described a dynamic analysis of a 
rail vehicle. The article pointed out the possibility of 
using a newly proposed method that solves the dyna-
mic analysis of a two-axle vehicle. It requires know-
ledge of the position of the center of gravity and the 
main central moments of inertia. The article also 
describes a current solution method for "determining 
the frequency and damping of the basic types of natu-
ral oscillations of the suspension of railway vehicles 
(for all types of vehicles). 

Chlebová [8] in their article focused on a simula-
tion analysis of the controlled oscillation of a vibrating 
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device. The article presents a design of a dynamic mo-
del of a vibrating mill. The mathematical model of the 
mechanical system of the mill was solved using La-
grange's equations II. type, on the basis of which a si-
mulation analysis of dynamic equations of motion was 
performed. The solution describes the deviations of 
the mechanical system during its oscillating movement 
in the horizontal and vertical direction. 

The publications on which the current professional 
work on the oscillation of the system of bodies is 
based include, for example: 

Kožešník [9] discusses the theory of vibrations of 
mechanical systems with special regard to applications 
in the field of mechanical engineering. It describes 
both simple systems with one degree of freedom and 
more complex systems, linear and random vibrations. 
He pays special attention to the use of Laplace and 
Fourier integral transforms, matrix and iterative met-
hods, but also various analytical methods. 

Brepta et al. [10] provide an overview of mechani-
cal vibration of discrete systems and continua, shock 
wave propagation, linear and nonlinear systems exci-
ted in a deterministic manner or by a random signal. 
Numerical and analytical methods of solution are also 
presented. 

Zeman, Hlaváč [1] describe in detail the oscillati-
ons of linear systems with one or more degrees of fre-
edom and also explain the basics of random oscillati-
ons of one-dimensional continua and nonlinear sys-
tems with one degree of freedom. 

Stejskal, Okrouhlík [11] provide a brief overview 
of basic principles and computational procedures that 
use problems about oscillations of mechanical sys-
tems. The book deals mainly with real systems. 
Discrete systems and systems with continuously dis-
tributed parameters are explained. Great attention is 
paid to the use of the finite element method. The 
examples solved here either illustrate the phenomenon 
discussed or are an example from technical practice. 

Considerable attention is paid to the issue of vib-
ration of a system of bodies. The authors focus mainly 

on symmetric systems, information about asymmetric 
systems is absent.

 Mechanical system model 

The mechanical system has entered parameters ac-
cording to the already assembled laboratory model. It 
is a steel plate, which is mounted on four coil springs 
of known stiffness. Two balances (equal to a quarter 
of the weight of the plate) are placed on the steel plate. 
This makes it possible to achieve an asymmetrical 
arrangement of the system. The plate is excited by a 
spring jump (one or more) of 5 mm. Inductive posi-
tion sensors measure the vertical displacements of the 
specified points (centers of spring mounting). 

In the case of a symmetric system, the center of 
gravity T lies at the intersection of the axes of geome-
tric symmetry, which define the coordinate system (x, 
y, z). External forces and moments act on the body. 

For the case of a symmetric system, it holds that C º 
T (C – geometric center, T – center of gravity), ex = 0, 
ey = 0. The main axes of inertia are identical with the 
axes of geometric symmetry. 

In an asymmetrical assembly of the system, the 
center of gravity T is deviated from the geometric cen-
ter of the system C by the values ex and ey (see Fig. 1). 

The vertical oscillation will then be performed 
using the analytical method in Matlab and MS Excel. 
The results will be compared with experiments that 
will be performed on a laboratory model of a mecha-
nical system. 

The aim of the work is the analysis of the vertical 
oscillation of the mechanical system. The work will be 
performed analytical and experimental investigation of 
the vertical oscillation of the system at different kine-
matic excitation. 

The experiments will be performed on a laboratory 
model of a mechanical system, which is located in the 
laboratories of the Institute of Machinery and Power 
Engineering FME JEPU. 

 
Fig. 1 Example of asymmetrical arrangement of balances on a model board (3D model and floor plan)

The analytical solution of the vertical oscillation of 
the system will be performed in the computer pro-
gram Matlab and also in the program MS Excel. In MS 

Excel, the analytical solution will be considered wit-
hout damping. An analysis will be performed in the 
Matlab program, including the damping coefficient of 
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the springs. 
The main goal of the work is to compare the expe-

rimental results with analytical and thus verify the ac-
curacy and applicability of the analytical method for 
the solved mechanical system. 

 Location variants 

For the case of a symmetrical system, the arran-
gement of the balancers on the plate according to Fig. 
2 was chosen. Both balancers were located in the mid-
dle of the plate. In this case, the center of gravity is 
identical with the geometric center of the system 

(C º T). 

 

Fig. 2 Symmetrical arrangement of the system 
 
For the asymmetrical arrangement of the system, 

the location of both balances on the right side of the 
base plate was chosen (see Fig. 3). In this case, the 
center of gravity is deflected ex in the longitudinal di-
rection (C ≠ T). 

 

Fig. 3 Asymmetrical arrangement of the system 
 
The springs were numbered 1 to 4 - according to 

Fig. 1. In Tab. 1 we can observe six proposed variants 

of kinematic excitation. The jump of all four springs 
at one time (variant F) corresponds to the symmetrical 
excitation of the system. Other variants (A to E) corre-
spond to asymmetrical excitation (jump of one to 
three springs in different combinations). 

Tab. 1 Used variants of kinematic excitation 

Asymmetric excitation vari-
ant 

Jumping springs 

A 3 

B 2, 4 

C 3, 4 

D 2, 3 

E 1, 2, 3 

Symmetric excitation vari-
ant 

Jumping springs 

F 1, 2, 3, 4 

 Analytical solution of the vertical oscilla-
tion of the model without damping 

For a simple case of vibration of the model without 
damping, a plate without balances was solved, the 
following parameters were chosen 

 
Board weightm =  20 kg 
Moments of inertiaJx = 0,351 kgm2   Jy = 0,905 kgm2 

Angle of rotation of the axes of inertiad = 0 rad 
Spring stiffness constantK = 9700 Nm2 
Distanceslx = 0,3335 m      ly = 0,134 m 
Eccentricity of the center of gravityex = 0 ey = 0 
Eccentricity of the center of gravity - asymmetric 

plateex = 0,1 m ey = 0,1 m 
Jump height h = 5 mm 
 
Furthermore M is a matrix of mass, K is a matrix 

of stiffness, F(t) is a vector of force excitation effects. 
The equations of motion for the spatial model 

were obtained using Lagrange equations of the second 
kind:

 
�
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where p is the number of degrees of freedom of the 
system, Rd is the Rayleigh function of the dissipated 
energy. In this case, the equation of motion applies to 
our solved model (not considered damping) in the 
form 

 9:̈. + <:. = >.(@)   for j=1, 2, 3 (2) 

Where generalized coordinates  

 q1(t) =[ wT(t), jx(t), jy(t)]T (3) 

In a symmetric model and symmetric kinematic ex-
citation, the differential equations in the system are in-
dependent of each other, for j = 1 the differential 
equation is inhomogeneous and for j = 2 and 3 the 
equations are homogeneous. This reduces the system 
to one equation, its solution 

 q1(t) = wT(t) = 
B
WB

∫ DB
E

F (G) HIJWB (E −  G)KG (4) 

where for km = k and hm =h; and by F1 = 
LM
N  ℎ (@) 

and jx(t) = 0, jy(t) = 0. For jump h(t) = -1 is 
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 wT(t) = −
 !

W"
 (1 − cosW$ %) (5) 

With a symmetric arrangement of the model and 
asymmetric kinematic excitation or with an asymmet-

ric model and with symmetric excitation and asymme-
tric model and asymmetric kinematic excitation, the 

solution of the equation for q1(t) = wT(t), q2(t) =jx(t), 

q3(t)= jy(t).

 qj(t) = ∑ (−1)'*$+
,-$ ∑

.h/

W/
∫ 23(4) 567W!(% − 4)84

3

9
+
!-$ , for j = 1, 2, 3 (6) 

The courses of vertical displacements are given by 
the relations: Vertical displacement of the general 
point of a symmetric model 

 wi(t)=  wT(t)+xi jy(t)-xi jx(t), (7) 

Vertical displacement of plate points 1 to 4 (asym-
metrical systems)  

 w1(t)=  wT(t) + (lx – ex) jy(t) - (lx-ey) jx(t) 

 w2(t)=  wT(t) - (lx – ex) jy(t) - (lx-ey) jx(t) 

 w3(t)=  wT(t) - (lx – ex) jy(t) + (lx-ey) jx(t) (8) 

 w4(t)=  wT(t) + (lx – ex) jy(t) + (lx-ey) jx(t) 

 Analytical solution of the vertical oscilla-
tion of the model with damping 

The equations of motion were compiled for the 
Matlab computer program, in which graphical results 
of the vertical oscillation of the mechanical system for 

the proposed variants of various kinematic excitations 
were then obtained. In the upper part of the picture 
you can always see the whole course of changes in the 
position of individual points (centers of springs) after 
the excitation of the system until its attenuation. At 
the bottom of the image, we can observe the course 
of the fifth to eighth seconds, thanks to which the in-
dividual shapes of oscillations at the respective points 
can be seen. 

In Fig. 4 we can observe the jump of all four 
springs in a symmetrically arranged system. All points 
of the plate (center of gravity, centers of spring moun-
ting) have the same shape and course, the curves 
merge into one. 

The measured data were processed in the Lab-
VIEW program and then transferred to the MS Excel 
program for creating graphs. For a symmetrical sys-
tem, the arrangement of weights on the board was 
chosen according to Fig. 10. The distribution of 
weights for an asymmetrical system is shown in Fig. 
11. 

 

Fig. 4 Symmetric system symmetrically excited 
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Fig. 5 Symmetrical system, asymmetrical excitation (spring jump 3) 

 
Fig. 6 Symmetrical system, asymmetrical excitation (spring jump 2 and 3) 

 
Fig. 7 Symmetrical system, asymmetrical excitation (spring jump 2 and 4) 
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Fig. 8 Symmetrical system, asymmetrical excitation (spring jump 3 and 4) 

 
Fig. 9 Symmetrical system, asymmetrical excitation (spring jump 2, 3 and 4)

 
Fig. 10 Arrangement of balances for a symmetrical system 

 
Fig. 11 Arrangement of balances for asymmetric system 
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In the following figures we see a graphical repre-
sentation of the course of changes in the deviations of 
individual points of the plate in symmetrical and asym-
metrical systems with different methods of kinematic 
excitation. In the upper part of the figure, the total 

course of oscillations from the moment of deflection 
of the system from the equilibrium position to the 
complete stabilization of the plate is recorded. The 
lower part of the figure always shows the shape of the 
oscillations in a period of one to two seconds. 

 

 

Fig. 12 Symmetrical system - spring jump 3, 4
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In Fig. 12 we can observe the course of displace-
ments of the measured points of a symmetrically 
arranged system during its asymmetrical excitation 
(spring jump 3 and 4). Regular repetition of oscillati-
ons of individual points can be seen at the bottom of 

the picture. After the jump of the front part of the side 
of the mechanical system, the system will be atte-
nuated in less than 12 seconds. 

 

 

Fig. 13 Asymmetrical system - spring jump 3, 4 
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The work derived the equations of motion of the 
solved mechanical system. One variant of symmetrical 
and one variant of asymmetrical arrangement of the 
system (different placement of two balances on the 
motherboard) was chosen to determine the similarity 
of the results of the analytical solution and the experi-
ment. Variants of different kinematic excitation of the 
system were also chosen. Excitation was performed by 
spring jumps. A total of six variants of different jumps 
were proposed. Symmetrical excitation of the system 
was performed by jumping all four springs at the same 
time. The other five excitation variants were asymme-
tric, where one or more springs jumped in different 
combinations. 

The calculation was also performed in the MS Ex-
cel program, which, however, did not include system 
damping. A symmetric system was solved in the MS 
Excel Program (all cases of excitation). 

The experimental investigation was performed on 
a laboratory model of a mechanical system. The same 
storage and excitation cases were investigated. Posi-
tion changes were measured by three inductive displa-
cement sensors. A virtual tool for measuring and pro-
cessing data has been created in LabVIEW. Graphic 
processing was performed in MS Excel. 

Due to the complexity of determining the spring 
damping coefficient, it was not possible to compare 
the time length of complete damping of the system 
after its excitation. To determine the attenuation time 
of symmetrically and asymmetrically arranged systems 
by means of analytical investigation, it is necessary to 
determine the attenuation coefficient of springs. This 
is possible by calculation (logarithmic decrement) 
using the measured data in the experimental investiga-
tion. 

The result of the work was that the time course of 
oscillations in the analytical and experimental survey 
was the same (95.5 % agreement). This makes it pos-
sible to use the derived equations of the analytical sur-
vey to determine the oscillation of individual parts of 
the mechanical system (simplified vehicle model). 
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