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In this research work, a heuristic method based on biologically motivated Particle Swarm Optimization 
(PSO) has been proposed for edge detection using multiresolution decomposition, to enhance the quality 
of the images for predicting surface roughness parameter Ra from Ti-6Al-4V turned surface images. First 
level Dual Tree Complex Wavelet Transform (DTCWT) is used to decompose the turned images to ge-
nerate new sub band images. The performance of DTCWT with PSO method is examined for turned 
surface images and compared with conventional edge detectors like Canny, and Sobel methods along 
with Discrete Wavelet Transform (DWT) with PSO and DTCWT without edge detection. The obtained 
results showed that, DTCWT with PSO based edge detection provides better looking edges and also best 
results are obtained in terms of Root Mean Square Error (RMSE) and Peak Signal to Noise Ratio (PSNR). 
Further, statistical features have been extracted from the images subjected to proposed edge detection 
method. The extracted statistical features along with machining parameters and tool flank wear have 
been given as inputs to radial basis function neural network (RBFNN) to predict Ra of the turned surface 
images. 
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 Introduction 

The surface roughness is a main and primary indi-
cator of the quality of machined work pieces. Gene-
rally, Titanium and its alloys are used in the manu-
facturing of parts and components for Biomedical, 
Aerospace, Automotive and other various areas of en-
gineering [1, 2]. Ti-6Al-4V is viewed as a challenging 
to machine material because of its lower heat con-
ductivity, lower modulus of elasticity, higher chemical 
reactivity, and also higher corrosion resistance [3]. Sur-
face roughness measurement using stylus approach 
does not support 100% assessment due to low speed 
and its own intrinsic constraints [4, 5]. Optical tech-
niques like machine vision combined with image tex-
ture analysis show better ability for non contact rou-
ghness estimation. The implementation of these met-
hods for surface roughness assessment has drawn re-
search attention nowadays [6, 7]. In many research 
works, efforts have been made for prediction of actual 
surface roughness through the analysis of image tex-
ture. Many image processing and machine vision ap-
plications have made significant utilization of edge de-
tection techniques for information extraction. There 
are several methods proposed for quantitative image 
texture assessment. The edge based methods are also 
considered for image texture analysis, which works ac-
cording to the quantity of edges in a specific region of 
the image [8, 29]. Edges are connected to the pixels 

where there is an abrupt change in intensity [26]. 
Despite the ability of the edge based methods to assess 
image texture, they did not receive adequate attention. 
It has been noted that edge based features are signifi-
cantly less sensitive to light intensity, which is a de-
sirable property in industrial environments [27]. 

Several edge detection methods are available for 
locating edge pixels in an image texture. Out of which, 
Sobel, Canny, Laplacian of Gaussian, and Prewitt are 
widely used [9]. Most of these edge detectors are gra-
dient based methods.  The biologically inspired met-
hods that are heuristic optimization techniques like, 
Particle Swarm Optimization (PSO), Bee Colony Op-
timization (BCO) and Ant Colony Optimization 
(ACO), have been used for edge detection [10-12]. 
One of the usual issues with traditional edge detectors 
is the use of a tiny size kernel to locate operators in a 
small and restricted region to identify boundary of the 
object inside the image. The detection quality is highly 
impacted by the area and size being observed, as the 
continuing edges of an object may take up a large part 
of the image. Smaller the area, the sensitivity to noise 
is more and lower is the localization accuracy. 

In this work, a heuristic method is suggested in 
which the entire image is used to find for edges, wit-
hout being localized. The multiresolution edge de-
tection using PSO is carried out. First level DTCWT 
is used to decompose the input images as sub band 
images. PSO is adopted with an objective function for 
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finding edges within the image. It is applied to each 
sub band images of DTCWT. The inverse of the pro-
cessed sub band images has been taken before apply-
ing the automatic thresholding to reconstruct the final 
edge detectors. 

Artificial intelligence is widely used in prediction of 
surface quality. Multilayer perceptron neural networks 
(MLPNN) which work on back propagation algo-
rithm has been successfully used by many researchers 
in surface roughness prediction of turned surfaces [13, 
25]. Apart from MLPNN, the RBFNN is one more 
common ANN model to improve approximation. 
RBFNN has great ability to compute nonlinear relati-
ons between inputs and outputs, and training is quic-
ker than multi-layer perceptron [28]. 

In this work, the statistical features were extracted 
from the proposed edge detection method. The ex-
tracted statistical features along with machining para-
meters and tool flank wear considered as inputs to 
RBFNN to predict Ra of the turned surfaces images. 
This paper is an attempt in applying multiresolution 
based edge detection for processing images in machi-
ning applications to improve its quality and facilitate 
extraction of good quality features, which provide 
good prediction results using any modeling technique. 

 Experimental details  

Ti-6Al-4V round bars of dimensions 200 mm in 
length and 50 mm in diameter were used for machi-
ning experiments using HMT made Stallion 100 SU 
CNC turning centre. For machining experimentation, 
coated carbide tool inserts of manufacturer grade 883 
with MR4 chip breaker and tool holder PCLNL 2020 
K12 was used (SECO TOOLS). The experiments 
were conducted using 150, 175 and 200 m/min cutting 
speed; 0.15, 0.2 and 0.25 mm/rev feed rate and 0.8, 1, 
and 1.2 mm depth of cut. MINITAB 17 is used for 
Design of experiments (DOE) methodology for plan-
ning the machining tests [13]. The best suitable DOE 
configuration is 33 factorial design, with a total of 27 
set of experiments. The experimental setup is shown 
in Fig.1.  

For capturing the turned images, a simple compu-
ter vision system has been designed. It includes a Sony 
DSC H300 digital camera (Resolution 20.1 Megapi-
xels) for image capturing, a work table for supporting 
the workpiece, an adjustable tripod stand, and lighting 
arrangement. Turned round bars were placed on a V-
block fixture, which was kept on work table. Ti-6Al-
4V bar is divided into 3 sections to get a turning pass 
of 48 mm and at the end of each pass, tool flank wear 
is recorded. Using Mitutoyo Tool Maker’s Microscope 
(TM 505/510) tool flank wear is measured. It has a 
provision for measurement along X and Y direction 
using micrometers. The least count of Tool Maker’s 
Microscope is 0.005 mm with 15X magnification. The 

tool insert was fixed back onto the tool holder for 
further machining after the measurement was comple-
ted. This system was pursued until the tool flank wear 
attained a maximum value of 0.4 mm. Taylor Hobson 
Taly Surf 50, a stylus type instrument used for measu-
ring Ra with 2.5 mm sampling length. On the surface 
of the workpiece at 3 different positions 1200 apart Ra 
is measured. Finally, average value is recorded. For 
each pass three images are captured, total experiments 
consisted of 461 machining passes. Therefore a total 
of 1383 turned images have been considered for ana-
lysis. The camera is located at 25 cm distance from the 
surface of the workpiece and this distance is mainta-
ined constant throughout the experiments. Using Pi-
casa tool, the captured images are cropped to pixel size 
256x256. Fig.2 shows the simple computer vision sys-
tem. 

 

a) 

 

b) 

Fig. 1 a) CNC Turning Centre HMT Stallion 100 SU, b) 
Experimental setup 
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Fig. 2 A simple computer vision system 

 Wavelet Transform 

Grossmann and Morlet [14] introduced the mathe-
matics of wavelets to be used as a tool in signal pro-
cessing. In a different way, Discrete Wavelet Trans-
form (DWT) displaces Fourier transform's infinitely 
oscillating sinusoidal base functions, with a set of re-
gional oscillating base functions known as wavelets. In 
the classical setting, the wavelets are expanded and 
shifted versions of a basic, real valued band pass wa-
velet ψ (t). If correctly identified and coupled with 
changes of the true valued low pass scaling function 
Ø (t), it forms an orthogonal basis function for 1-di-
mensional real valued continuous time signal [15]. Let 
x (t) be a finite energy analog signal, which is decom-
posed into wavelets and scaling function via

 x(t) = ∑ c(n)Ø(t − n) + ∑ ∑ d(j, n)2
#

$%
&'*� ѱ!2#t − n%  �#'(�)'*�   (1)

The scaling function c (n) and wavelet coefficients d 
(j, n) are determined using 

 c(n) =  ∫ c(n)Ø(t − n)dt      �*�      (2) 

 d(j, n) =  2#/0 ∫ x(t)ѱ!2#t − n%dt.�*�   (3) 

 
In DWT, the first step is to apply the filters to the 

rows of image. That generates two images, first image 
is a set of approximate row coefficients and the other 
is a set of detail row coefficients. In the second step, 
filters are introduced to each column of newly genera-
ted images. This method of DWT decomposition pro-
duces four sub band images. Out of these four sub 
band images; one is approximation image and remai-
ning three are detail images. The detailed coefficients 
represent specific scale information and orientation. 

3.1 DTCWT 

DWT suffers from shift variance, and because of 
down sampling, aliasing occurs. Because of this, wave-
let gives a different kind of output, when there is a 
minor change in the input signals. This issue has been 
resolved by Kingsbury [16] and Selesnick et al. [17] by 
implementing DTCWT, which gives advantages of 
shift invariance, improved directional selectivity in 
two dimensions, perfect reconstruction, and less re-
dundancy. Perfect reconstruction can be obtained 
using DTCWT, because it utilizes 2 parallel filter bank 
trees with real valued image coefficients generated by 
a single tree. Ordinary DWT offers selectivity for dia-
gonal characteristics in 3 fixed paths with low discri-
mination, whereas DTCWT produces 12 wavelet co-

efficients (6 real coefficients and 6 imaginary coeffi-
cients) which are oriented at angles of ±150, ±450, 
±750 in 2 dimensions. A 2-D image f is decomposed 
to different scales of xj using DTCWT as given below 
[18]: 

  = 3x4, x0, … . . , x#, y#5  (4) 

 x#= 6x78,4# (l, k), x78,0# (l, k), … . . x78,9# (l, k)
x:;,4# (l, k), x:;,0# (l, k), … . . x:;,9# (l, k)  (5) 

where xj represents jth level high frequency coefficient, 
yj is last level decomposition for low frequency coeffi-
cients, xj includes real and imaginary coefficients for 6 
directional sub bands, and (l,k) denotes coefficient lo-
cation. 

 Particle Swarm Optimization (PSO) 

Inspired by birds flocking, Kennedy and Eberhart 
[19] implemented PSO to simulate behaviors of 
swarms in order to optimize a numeric problem itera-
tively. The described procedure for PSO is as follows. 

Each particle of a population has the following 
belongings: the recent position of an inquest area xi, 
the latest velocity vi, and also better position in the 
inquest region yi. A better region yi, responds to a 
place in the inquest area, such as objective function f 
supplied particle i with the least calculated error. The 
place that generated the least error throughout yi is re-
garded as best global position, which is denoted as y′. 
Eqs. (6) and (7) provide revised best positions for lo-
cal and global best positions respectively. The swarm 
is intended to have s particles, hence i{1,…,s}

 y<(t + 1) =  @ y<(t), if f(x<(t + 1) ≤ f!y<(t + 1)%x<(t + 1),     if f(x<(t + 1) > C( y<(t + 1))      (6)

 yD(t) E{(y((t), y4(t), . . , yF(t)}, f!y(t)% = min3f!y((t)%, f!y4(t)%, … , f!yF(t)%5   (7) 
 

During each loop, every particle in the group is up-
graded utilizing (8) and (9). Randomly produced num-
bers r1 and r2 is considered to improve performance 
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of operation. For complete measurements, �∈ {1, . . . 

, !}, let x$,% give new position, y$,% is local best position 

and v$,% is updated speed for �&ℎ dimension of (&ℎ par-

ticle,   y) *(t) provides the best particle so far found in 
the whole swarm at time t. 

The convergence action of PSO is controlled by 
weights w. The movement of the particles in one sin-

gle loop is controlled by constants c. and c/. Speed 
updated is given as:

 v$,%(t + 1) = w.. v$,%(t) +  c..r.,% 3y$,*(t) − x$,%(t)5 +  c/. r/,% 3y6*(t) − x$,%(t)5   (8)

The next particle position x$,%(t + 1) is selected 

using new speed v$,%(t + 1)to the particle’s recent lo-
cation x$(t) 

 x$,%(t + 1) = x$,%(t) + v$,%(t + 1)  (9) 

The measured speed vector value is set up in 

between [−v789,v789] for reducing the probability of 
a particle, which tends to leave the inquest zone. Value 

of v789 is generally chosen as :×x789 , i.e. 0.1 ≤ : ≤ 

1.0, where  x789  represents the field of the inquest 
zone [19]. Generally, PSO execution changes width 

value ; throughout the training time. w value decre-
ases linearly from 1 to 0 for each run. The coefficients 

of acceleration, c.  and c/ control the distance covered 
by a particle in each loop. 

PSO parameters: The acceleration coefficients 
are taken as c1=2.5, c2=1.5. The population size is se-
lected as 30. The number of iterations considered is 
50. 

 Methodology 

Alaa Eleyan and Muhammad S Anwar [20] propo-
sed DWT with PSO and DTCWT with PSO multire-
solution edge detection for different types of images 
(white water rafters, girl with painted face, lighthouse 
in maine, and sailboat). The proposed edge detection 
methods were compared with Sobel, and Canny edge 
detection methods. The edge detection using DWT 
with PSO and DTCWT with PSO gave better looking 
edges and provided good objective evaluation results 
with lower RMSE and higher PSNR compared to con-
ventional edge detectors like Canny and Sobel. Out of 
these two proposed multiresolution edge detection 
methods, DWT with PSO showed slightly better re-
sults compared with DTCWT with PSO edge de-
tection for different images considered. This multire-
solution edge detection method is adopted in this 
study. Machined surface images are considered for 
edge detection and important statistical features can 
be extracted from these machined images to improve 
the quality of modeling and prediction. 

DTCWT utilizes two real DWT tree for image de-
composition; the real part of transform is provided by 
first DWT, while imaginary part is provided by second 
DWT tree. These two DWT trees utilize two pairs of 
filter bands, which need to satisfy better recon-
struction conditions. First level, DTCWT is used to 
decompose the original machined images. The main 
focus is to divide original machined images into sub 
bands of image coefficients and apply PSO for each 
sub band to carry out edge detection. Finally using in-
verse DTCWT, the decomposed wavelet coefficients 
with PSO is reconstructed. The obtained reconstruc-
ted images are thresholded to get a binary image invol-
ving detected edges using the automatic thresholding 
function [20]. Fig. 3 represents block diagram of the 
methodology used in this work. 

 

Fig. 3 Methodology of this work [20] 

5.1 PSO objective function 

Usually, an objective function is the result of the 
mathematical or statistical representation, which is 
required to be decreased or increased using nonlinear 
programming methods. As in all other optimization 
techniques, PSO also requires objective function. The 
performance of the algorithm is directly related to the 
proposed objective function. For the current work, 
Manhattan distance operator f is proposed as the ob-
jective function. The Manhattan distance operator is 
determined using each particle of the swarm in PSO. 
The particle, p of a swarm of PSO finds itself on pixel 
c which is placed on a coordinate (i, j) of image I. All 
the neighbourhood pixels around center pixels c are 
considered and the Manhattan distance from the cen-
tre pixel is determined by considering Eq. (10). Gre-
ater output of the objective function indicates higher 
possibility of existence of edges. Therefore, for opti-
mization of the problem, maximization of the ob-
jective function is necessary [20].

f =  !I(#$%,&$%) − Z! + !I(#$%,&) − Z! + !I(#$%,&*%) − Z! + !I(#,&$%)$-! + !I(#,&*%) − Z! + !I(#*%,&$%) − Z! +
!I(#*%,&) − Z! + !I(#*%,&*%) − Z!   (10)

where |.| gives operator of complete value and 

Z=I (i, j) is the center pixel at location (., /) of an image 

0, at which recent swarm particle is located. 

5.2 Automatic thresholding function 

The reconstructed images are thresholded to get 
binary images using automatic thresholding function. 
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The automatic thresholding makes it more specific, 
because it acquires the output image statistical distri-
bution, which may be different from one image to 

another. For DWT, the threshold 1DWT is given by [20] 

 1DWT = 
2

 34
∑ ∑ I′(#,&)

4
&7%

3
#7%    (11) 

where, I' is the reconstructed image, 8x9 represents 

size of reconstructed image, and : is the adjustable va-
riable between 0 and 1 normally nearer to 1. 

For DTCWT with PSO method, the threshold 

1DTCWT is given by 

 1DTCWT = :;<>?  (12) 

where ;<>? gives pixel intensity with maximum possi-
bility of occurrence. 

 Results and Discussion 

6.1 Comparison of edge detection methods 

In this work, a multiresolution edge detection tech-
nique using DTCWT with PSO has been carried out. 
This method is compared with DWT with PSO, So-
bel, and Canny edge detectors. Fig.4 indicates a 
sample original cropped image for cutting conditions: 
200 m/min speed, feed 0.2 mm/rev and depth of cut 
1.2 mm. Fig. 5 shows the image output from different 
edge detection methods. From the figure, it is obser-
ved that details of rafters are much clearer for multi-
resolution edge detector, namely DTCWT with PSO 
and DWT with PSO. Sobel and Canny methods have 

very less edge details that make it hard to say what the 
image is really about. The quality measurement and as-
sessment of edge detector is a challenging job, because 
edge details may be altering from one application to 
another. Besides human subjective examination, two 
objective evaluation methods i.e., Peak Signal to Noise 
Ratio (PSNR) and Root Mean Square Error (RMSE) 
are used to assess the effectiveness of the multiresolu-
tion edge detection method and comparisons have 
been made. 

 

Fig. 4 Original machined image for cutting conditions: speed 
200 m/min, feed 0.2 mm/rev and depth of cut 1.2mm 

 

Fig. 5 Images for different edge detection methods 
 
RMSE integrates corruption function and statisti-

cal characteristics of noise in the edge detected image. 
It estimates the average square difference among 
initial gray images and the final reconstructed binary 
detected edges. Higher the RMSE, larger is variance 
between the original and produced image. The 
equation for RMSE is 

 RMSE = 
�

 ! ∑ ∑ [$(%, &) − *(%, &)]+!-.� /.�  (13) 

where F(l,k) is the reconstructed image after threshol-
ding, R(l,k) is the original image , and M x N gives 
image size. 

PSNR is defined as the ratio between maximum 
power of a signal to the power with corrupting noise, 
that influence the reflection quality. A PSNR with ma-
ximum value represents good quality of image [21]. It 
is determined using 

 PSNR = 10 log 
0110

23450  (14) 

 
Tab. 1 and Tab. 2 shows the PSNR and RMSE 

values respectively for sample images for cutting con-
ditions: 150 m/min speed, feed 0.15 mm/rev and 
depth of cut 0.8mm.
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Tab. 1 PSNR values for sample machined images 
Sl no. Sobel Canny DWT with PSO DTCWT with PSO 

1 42.201 41.499 47.559 49.549 
2 42.469 42.194 46.933 49.986 
3 43.198 42.434 47.796 49.027 

4 42.116 41.358 46.449 49.338 

Tab. 2 RMSE values for sample machined images 

Sl no. Sobel Canny DWT with PSO DTCWT with PSO 

1 15.738 14.885 4.717 3.844 

2 15.793 14.746 4.599 2.909 
3 15.818 14.848 5.312 2.630 

4 15.804 14.966 3.459 3.280 

 
The proposed multiresolution edge detection met-

hod is compared with traditional Canny and Sobel me-
thod in terms of PSNR and RMSE values. From 
Tab.1 it is observed that there has been good percen-
tage improvement of PSNR values for DTCWT with 
PSO method compared with conventional Canny me-
thod for sample of machined images. Compared to 
Canny operator, a 16.17 % increase in PSNR for 
DTCWT with PSO is achieved. Further, there is a re-
duction of 12.21% of RMSE. It is also observed that, 
11.21% PSNR improvement is obtained for DWT 
with PSO compared with Canny edge detector and 
also a reduction of 11.5% of RMSE is achieved when 
compared with Canny operator. For the current work 
DTCWT with PSO edge detection method gives bet-
ter results, when compared with DWT with PSO me-
thod, because DWT suffers from shift variance, alia-
sing and also DWT offers diagonal characteristics only 
in three paths, whereas DTCWT produces 12 decom-
position coefficients. 

In a related work, the authors have carried out sur-
face roughness evaluation using DTCWT and GLCM 
extracted features from Ti-6Al-4V machined image 
surfaces using radial basis function neural network 
modeling [22, 23], where DTCWT gave better results 
compared to conventional DWT. The proposed mul-
tiresolution edge detection method is compared with 

DWT and DTCWT without edge detection. In edge 
detection method, the final image is converted into bi-
nary image for proper visualization of edges. Hence it 
is not possible to extract the same features as 
described by the authors in their previous work [22, 
23]. But the proposed edge detection method is com-
pared in terms of PSNR and RMSE values.  The com-
plex decomposition of DTCWT with PSO method re-
tains more edges by removing unwanted, mixed and 
noisy edges of machined images. Tab. 3 gives the 
PSNR and RMSE values obtained for sample of tur-
ned images for same cutting conditions as considered 
in table 1 & 2. It is observed that, DTCWT with PSO 
edge detector gives better results in terms of PSNR 
and RMSE when compared with other edge detectors 
as well as DWT and DTCWT without edge detectors 
for evaluating turned surface images. The DWT with 
PSO edge detection method is compared with DWT 
without edge detection and it is observed that, an 
average of 19.35 % improvement in PSNR is achieved 
with a reduction of 2.85% of RMSE. Further, 
DTCWT with PSO edge detection method is compa-
red with DTCWT without edge detection, it is obser-
ved that an average of 17.69 % improvement in PSNR 
is achieved and a reduction of 2.85% of RMSE.

Tab. 3 PSNR and RMSE values for sample machined image 

Sl no. 
DWT (without edge 

detection) 
DTCWT(without 
edge detection) 

DWT with PSO (with 
edge detection) 

DTCWT with PSO 
(with edge detection) 

PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE 
1 27.807 7.324 31.426 6.712 47.559 4.717 49.549 3.844 

2 27.789 6.986 31. 914 6.265 46.933 4.599 49.986 2.909 

3 27.878 7.729 32. 344 5.892 47.796 5.312 49.027 2.630 
4 27.842 7.475 31. 427 4.496 46.449 3.459 49.338 3.280 

6.2 Surface roughness prediction using RBFNN 

Nowadays, artificial intelligence is widely used in 
prediction of quality of surface. The ANN model de-
velopments, genetic algorithm (GA), fuzzy logic and, 

information-based expert solutions implement the re-
sults in such a way similar to human beings processing 
information and making decisions [30]. In many fields 
of industrial applications artificial neural networks are 
used. ANN models can identify the relationship 
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between input and output data sets only through lear-
ning or training through complex nonlinear inter rela-
tionships. Neural network (NN) recognizes the input 
and output data only by assigning the desired weights 
of any input variance to get the minimum error 
between the predicted output and the data of actual 
output. Multilayer perceptron (MLPs) can solve some 
difficult and complex problems effectively with a 
common supervised training algorithm known as the 
back propagation algorithm. Other than MLPNN, the 
RBFNN is one more common model of ANN for im-
proving approximation. The RBFNN is a simple three 
layered feed forward neural network. The input neu-
rons are present in first layer. The second layer con-
sists of neurons with Gaussian function and the third 
layer consists of output nodes with nonlinear activa-
tion function as shown in Fig. 6. In this type of 
network only the weights between hidden and output 
layer are modified during the training. The Gaussian 
transfer functions have been used in the hidden layer 
of neurons which is given by Eq. (15). 

 67(8) = −9:;<‖>?@A‖B
+CDB E  (15) 

where x is the input variable, μi is center variable of 
RBF unit and, σj is variance of Gaussian function. If 
there are N number of radial basis units in the second 
layer and one output layer, then the output is given by 
Eq. (16). 

 Y = 
�

�FGH ∑ IAJKL   (16) 

where φ signifies the activation function of the radial 
basis units. Weights wi defines through which the out-
put of a RBF unit are multiplied in the output and, b 
is a bias [24]. 

 

Fig. 6 A general construction of RBF neural network 
 
From the DTCWT with PSO edge detection met-

hod, the statistical features namely, mean, standard de-
viation, and variance have been extracted from the tur-
ned surface images [25]. Tab.4 shows sample of ex-
tracted statistical features from the turned surface 
images. The extracted features along with tool flank 
wear, and machining parameters namely, feed rate, 
speed rate, and depth of cut are considered as inputs 

to RBFNN model for the prediction of RN.

Tab. 4 Sample of statistical features extracted for feed 0.2 mm/rev, speed 175 m/min, and depth of cut 1.2 mm.  

Sl no. Mean Standard deviation Variance 

1 245.77 47.58 2266.79 

2 246.08 46.15 2184.55 

3 245.87 47.29 2242.85 

4 243.20 53.29 2864.36 

 
For RBFNN modeling, out of 461 data collected 

from the experiments, 85% of the data (i.e. 392 data) 
are considered for training the model and the remai-
ning data (69 data) considered as test data for testing 
the RBFNN model. The RBFNN uses the Conditio-
nal Fuzzy C- Means algorithm (CFCM) to set the nu-
mber of RBF units and the position of the centers in 
the RBF units [13]. The CFCM algorithm is used to 
train the RBFNN with different widths of 0.1, 0.12, 
and 0.14. The simulation parameters were kept con-
stant namely learning rate as 0.85, the momentum rate 

as 0.05 and maximum number of epochs as 1000.The 
network has been trained by varying the RBF units; 
the maximum prediction accuracy is obtained for 60 
RBF units. The mean squared error which is the 
network training goal is fixed as 0.001. Width of the 
RBF units has been selected using trial and error met-
hod based on prediction accuracy. 97.42% of ma-
ximum prediction accuracy is obtained for training 
data and 96.52% for test data with minimum MSE for 
60 RBF units with a width of 0.12. 

Tab. 5 Performance of RBFNN model for 60 RBF units 

width Training accuracy Testing accuracy MSE 

0.1 96.24 94.44 0.017 

0.12 97.42 96.52 0.018 

0.14 95.95 94.44 0.018 

0.16 89.88 88.15 0.021 
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Using Eq. (17) the percentage error for the 
RBFNN model was determined, which gives the rela-
tive error. 

 Re= OPQ� !#
!�

$%x 100 %  (17) 

where Re gives relative error of the model, vm is the 
actual stylus measured and vp is the predicted value of 
surface roughness. Tab. 6 gives the error obtained for 
randomly selected test data.

Tab. 6 Results obtained for test data 
Sl. no Experimental Ra Predicted Ra error % 

1 0.5194 0.5038 3.00 

2 0.3716 0.3823 2.87 

3 0.4406 0.4553 3.33 
4 0.4144 0.4070 1.78 

 
The DTCWT with PSO edge detection method 

provides better looking edges and it also eliminates the 
unwanted, mixed and noisy images. This improves the 
quality of the extracted features from the turned 
images, which further improves prediction accuracy 
for training and test data for the developed RBFNN 
model.  

As discussed, the results obtained for RBFNN mo-
del have been compared with [22], in which authors 
have carried out surface roughness evaluation using 
DTCWT and GLCM extracted features without edge 
detection for Ti-6Al-4V turned surface images. It has 
been observed that a maximum of 11.41% of increase 
in prediction accuracy for training data and 11.02 % 
for test data is achieved, when compared with 
DTCWT with PSO edge based features. This esta-
blishes the strength of proposed edge detection met-
hod in surface roughness modeling and prediction 
using RBFNN. 

 Conclusions 

The main focus of current work is to develop an 
edge detection method based on PSO algorithm with 
improved quality using DTCWT multi resolution ap-
proach for evaluating the surface roughness of turned 
surface images. PSO is applied to the decomposed sub 
band turned images in order to get more connected 
edges. The DTCWT with PSO edge detection method 
is compared with DWT with PSO, Sobel, and Canny 
edge detectors. The proposed method shows better 
looking edges, and further it eliminates the unwanted, 
mixed and noisy images. The objective evaluation in 
terms of PSNR and RMSE values gives better results. 
A comparison with DWT and DTCWT without edge 
detection, establishes the significance of use of edge 
detectors in improving the quality of turned images. 
DTCWT with PSO edge detection provides an 
average of 17.69 % of PSNR improvement, with a re-
duction of 2.85% of RMSE values when compared 
with DTCWT without edge detection method. 

The RBFNN model developed using DTCWT 
with PSO edge based features provides good results 
with a prediction accuracy of 97.42 % for training data 
and 96.52 % for test data. The obtained results show 

that the proposed RBFNN model achieves an average 
error rate of 2.74 % for randomly selected test data, 
which is acceptable for this kind of applications. 
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