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The turning process is one of the most common machining operations in various manufacturing in-
dustries. It is conducted by eroding the rotating workpiece using a tool that moves in a linear motion. 
This study examined the genetic algorithm (GA) as the optimization method for the dry turning process 
of AISI 316L. GA is a meta-heuristic method that imitates the principle of natural selection, in which the 
most suitable individuals are selected for reproduction to produce the next generation of offspring. The 
optimization process was started by executing the selected experimental design based on the process 
parameters and their levels. The tool nose radius, cutting speed, feed rate, and depth of cut were selected 
as the process parameters in this study. The outcome of this step was a fitness function that explained 
the relationship between the process parameters and the material removal rate (MRR) or the surface 
roughness (SR). GA used the fitness function to produce the optimal process parameters with the highest 
MRR and the lowest SR in a separate optimization process. The optimization methodology developed in 
this study can be utilized to predict the optimum value of the MRR and SR for the dry turning process 
and with less than a 7% deviation from the actual value.  
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 Introduction 

Material removal rate and surface roughness play 
an important role in many fields and are very impor-
tant factors in evaluating machining accuracy [1,2]. 
The turning process is one of the important and wi-
dely used machining operations in the manufacturing 
industry. In the turning process, cutting conditions 
(such as cutting speed, feed rate, depth of cut, tool 
conditions, and workpiece material) will affect proces-
sing efficiency and performance characteristics. Need 
to choose the most suitable machining settings to im-
prove cutting efficiency, low-cost processes, and high-
quality products. 

Cleaner production has become a goal within the 
present manufacturing industries. Key methods of re-
ducing the environmental pollution in the process of 
manufacturing involve the reduction of pollution ge-
nerated by coolants. Cleaner production is a concept 
that can improve environmental performance [3]. 
Their experiments were carried out in dry and coo-
ling/lubricating conditions, and involved the measure-
ments of surface roughness, cutting force, tool life, 
cutting energy, and tool-chip friction coefficient. They 
focused on dry cutting effects in turning duplex stain-
less steel using the coated carbide tools. Chen et al. 

conducted an experiment to study the effect of ce-
mented carbide tools on the surface roughness of 
stainless steel under dry turning conditions. From 
their conclusions, it can be seen that as the tool wear 
increases, the surface roughness of the workpiece in-
creases significantly, so the quality of the surface of 
the workpiece decreases significantly [4]. Their re-
search can provide a reference for dry cutting with ce-
mented carbide tools. 

In various engineering fields, the application of sta-
inless steel materials has greatly increased. Austenitic 
stainless steel (ASS) grade has high chromium content 
and low molybdenum content and is an excellent en-
gineering material. AISI 316L is a chromium-nickel-
molybdenum ASS and is developed to provide corro-
sion resistance in moderately corrosive environments 
that can be applied in biomedical devices and implants 
in the human body [5,6]. Asiltürk and Akkus conduc-
ted dry turning experiments on AISI 4140 hardened 
steel using coated carbide tools. Their conclusion 
shows that the feed rate has a greater influence on the 
surface roughness [7]. 

The development of the manufacturing process 
significantly creates the need for an optimization pro-
cess, to obtain more efficient results, both cost and 
time efficiency. Mathematically, optimization is a way 
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of getting extreme values both maximum and mi-
nimum of a particular function with its limiting factors 
[8]. Harhout et al. [9]  made a study using a combina-
tion of Polynomial Regression, ANOVA dan Re-
sponse Surface Methodology to investigate the effect 
of turning process parameters on AISI 1050 and to 
optimize its surface roughness and material removal 
rate. 

The ability of the Genetic Algorithm (GA) as a ran-
dom search method to obtain optimal global values 
makes this method often used. Based on studies con-
ducted by various researchers, this method can be 
used in various manufacturing processes with satis-
factory results [10-12].  

The purpose of this study was to obtain the value 
of the dry turning process parameters to achieve the 
optimal material removal rate (MRR) and surface rou-
ghness (SR) using the GA optimization method. The 
optimization process is conducted using data obtained 
from a limited number of experiments. The data is 
processed according to the GA optimization method 
so that the results are considered optimal. These re-
sults are verified and validated by conducting experi-
ments using the optimization parameter results. 

 Experimental Investigation 

The experimental setup used a lathe machine LA-
530, as shown in Fig. 1. This machine has 12 levels for 
rotating speed and 16 levels for the feeding rate. The 
workpiece material used is a cylindrical bar of AISI 
316L steel with a hardness of 195 BHN, a length of 
100 mm, and a diameter of 63 mm. The cutting tool 
inserts used for the experimental work are tungsten 
carbides with specification VBMT-160404 and 
VCMT-160408.  The surface roughness of the turned 
workpiece was measured with a Mitutoyo surface 
roughness tester (SJ-410), and its cut-off value was 0.8 
mm. (Fig. 2). 

 

Fig. 1 Lathe Machine using for the Experiments 

 

Fig. 2 Portable Surface Roughness Tester 

2.1 Methodology 

The methodology is a representation of the se-
quence of the activities in the research work. The steps 
involved in data collection, model development, and 
optimization in this study are summarized as follows: 
1) Identify process parameters and responses; 2) Find 
out the limits and levels of process parameters; 3) 
Construction of experimental design; 4) Experimental 
work and data collection; 5) Establish a mathematical 
model; 6) Optimize process parameters; 7) Validation 
of experiment. 

The cutting speed, feed rate, and depth of cut have 
a direct influence on MRR. In addition, the cutting 
speed, feed rate, and tool nose radius influence on SR. 
Therefore, in this study, it is critical to investigate the 
effect of cutting speed, feed rate, depth of cut, and 
tool nose radius on MRR and SR. 

The work begins by determining the number of in-
dependent process parameters and their levels. The 
process parameters are tool nose radius, cutting speed, 
feed rate, and depth of cut, while the levels are deter-
mined based on the range contained in the reference 
source. In this study, the reference used is the 
Mitsubishi Technical Data for workpiece material and 
tool material used [13]. Tab. 1 shows the process pa-
rameters and their corresponding levels. 

Tab. 1 Process Parameters and Their Levels 
Sym-
bol 

Process parameters 
Levels 

1 2 3 

re 
Tool nose radius 

(mm) 
0.4 0.8 - 

vc 
Cutting speed 

(m.min-1) 
95 127 185 

f 
Feed rate (mm.rev-

1) 
0.053 0.11 0.21

d Depth of cut (mm) 0.3 0.6 0.9 

2.2 Development of mathematical models 

The model generated by this method is influenced 
by various parameters, while the objective is to opti-
mize the model. The response is expressed as a func-
tion of process parameters as variables and is called a 
multiple regression model. In general, a multiple re-
gression second-order cross-product model with k in-
dependent variables is given by Eq. 1 [14]: 



June 2021, Vol. 21, No. 3 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

indexed on: http://www.scopus.com 375  

� = !" + ∑ !%
&
%'( � ! + ∑ $!!  � !

&'
!() + ∑ $ ! �  �!

'
!*   (1) 

 i = 1, 2, 3…, n; j = 1, 2, 3…, k 

 

Where: β0 is a constant term, βj is the coefficient of 
the linear terms, βjj is the coefficient of the quadratic 
terms, βij is the coefficient of the cross product term, 
and xi, xj are variables. 

2.3 Genetic algorithms 

Genetic algorithm (GA) is a computerized search 
and optimization algorithm based on the biological 
evolution process and was first introduced by Holland 
in the year of 1970s [15]. Due to its simplicity, ease of 
operation, minimum requirements, and overall nature, 
GA has been successfully used for various problems 
[16]. GA simulates the characteristics of a biological 
system such as self-repair and reproduction. The evo-
lutionary process is random but guided by a selection 
mechanism based on the suitability of a single struc-
ture. GA starts with a series of possible solutions to 
problems and then develops into better solutions. A 
group of individuals represents a population, and each 
population will generate other populations until a cer-
tain number of generations are generated, or the pop-
ulation's satisfactory adaptation level is reached. In 
general, the GA optimization process follows the fol-
lowing process: determining the initial population, 
evaluation, selection, crossover, and mutation. The 
first generation is obtained by randomly generating a 

population with predetermined chromosomes. To ob-
tain the required solution and the number of chromo-
somes in the population, the process needs to meet a 
set of requirements [10,17]. In each chromosome, 
there are several genes. Through the analogous bio-
logical evolution, each gene in the chromosome indi-
cates a specific process parameter. For instance, gene 
1 represents the tool nose radius, gene 2 represents the 
cutting speed, gene 3 represents the feed rate, and 
gene 4 represents the depth of cut. If the number of 
chromosomes used is too small, the individuals avail-
able for the crossover and mutation process will be 
very limited, making the whole process futile. On the 
contrary, too many chromosomes will also slow down 
the process of GA. It is recommended that the num-
ber of chromosomes is higher than the number of 
genes in a single chromosome. However, it is also rec-
ommended not to consider the nature of the problem, 
because too many genes are not recommended [10]. 

2.4 Design of experiments 

The minimum number of experiments that can 
represent the overall data is the L18 orthogonal array. 
The process of determining the combination of each 
process parameter and its level is carried out with the 
help of Minitab software. The results of the combina-
tion of each independent variable from Minitab can be 
seen in Tab. 2 in the form of the design of experi-
ments. The cutting process model is formulated in 
terms of cutting conditions namely tool nose radius, 
cutting speed, feed rate, and depth of cut. 

Tab. 2 Design of Experiments 

No. 
Tool nose    radius re 

(mm) 

Cutting speed vc 
(m.min-1) 

Feed rate f (mm.rev-1) Depth of cut d 
(mm) 

x1 x2 x3 x4 
1 0.4 95 0.053 0.3 
2 0.4 95 0.11 0.6 
3 0.4 95 0.21 0.9 
4 0.4 127 0.053 0.3 
5 0.4 127 0.11 0.6 
6 0.4 127 0.21 0.9 
7 0.4 185 0.053 0.6 
8 0.4 185 0.11 0.9 
9 0.4 185 0.21 0.3 
10 0.8 95 0.053 0.9 
11 0.8 95 0.11 0.3 
12 0.8 95 0.21 0.6 
13 0.8 127 0.053 0.6 
14 0.8 127 0.11 0.9 
15 0.8 127 0.21 0.3 
16 0.8 185 0.053 0.9 
17 0.8 185 0.11 0.3 
18 0.8 185 0.21 0.6 
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Results and Discussion 

3.1 Experimental and modeling 

The response produced by this experiment is the 
MRR and SR. The MRR value is obtained using the 
following equation:  

��� =  
!

"#
(2) 

The volume of the cut material (V) is obtained by 
subtracting the material initial weight with the final 
weight after machining and divided by the density of 
the material of AISI 316L steel of 7.98 g.cm-3. The ma-
chining time of tc is measured by using a stopwatch. 
SR values are obtained using a surface roughness 
measuring device. 

The developed models for predicting MRR and SR 
are represented by Eqs. 3 and 4:

 $% = 4.05 + 0.334 '% + 1.04 '( + 2.12 ') + 1.98 '* + 0.0892 '%'( + 0.686 '%') −  0.383 '%'* +

 0.832 '(') +  0.345 '('* + 0.505 ')'* (3) 

$( = 1.88 − 0.0501 '% − 0.0794 !" + 0.6 !$ + 0.162 !% − 0.213 !'!" − 0.188 !'!$ + 0.156 !'!% +
 0.0616 !"!$ − 0.139 !"!% − 0.116 !$!%  (4) 

Tab. 3 MRR and SR Results from Experiment and Modeling 

No. 

MRR SR 

y1(exp) (cm3.min-1) y1(model) (cm3.min-1) 
y2(exp)

(mm)

y2(model)

(mm)
1 0.83 0.39 0.75 0.69 
2 2.75 2.60 1.54 1.64 
3 6.89 6.59 2.91 2.73 
4 0.47 0.10 1.01 0.88 
5 1.73 3.24 1.32 1.74 
6 8.37 8.62 2.84 2.76 
7 1.74 2.26 1.39 1.17 
8 8.51 7.62 1.63 1.74 
9 4.22 4.10 3.55 3.58 
10 1.84 1.99 2.72 2.46 
11 0.70 1.43 1.54 1.48 
12 5.52 5.63 2.41 2.59 
13 1.68 1.35 1.33 1.47 
14 5.83 5.26 1.99 2.25 
15 5.49 4.87 2.37 2.18 
16 3.25 3.51 1.35 1.24 
17 2.96 2.69 1.02 1.17 
18 10.23 10.78 2.22 2.10 

The results of MRR and SR values obtained from 
the experiment and the modeling can be seen in Tab. 
3. 

3.2 Statistical test 

Modeling equations for MRR and SR must be tes-
ted before proceeding to data processing. There are 
two statistical tests, which are F-test and t-test. Based 
on Eqs. 5 and 6, F values and t values are obtained and 
shown in Tab. 4 and Tab. 5. 
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Where: SSR is the sum of squared residuals, SSE is 
the sum of squared errors and s2 is the variance. Based 

on various previous studies, the value of the 
confidence level that is often used is 95%, so an α 
value of 0.05 is obtained [18]. The values of n and q to 
determine F-statistics and t-statistics were obtained 
from the number of experiments and the independent 
variables used. The number of experiments (n) is 18 
and the independent variable (q) is 4. 

Tab. 4 F-test Results 
Model Fdry value F0.05;4,13 

y1 82.8 3.18 
y2 54.9 3.18 

Tab. 5 t-test Results 
Variable t(y1) t(y2) t0.025;13

t1 ® x1 1.72 -0.82 2.16 

t2 ® x2 5.74 -1.38 2.16 

t3 ® x3 10.30 9.16 2.16 

t4 ® x4 9.77 2.52 2.16 
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The F-test value in both equations has a greater 
value compared to the F-statistic. This shows that 
there is a difference between the variance of modeling 
and experiment both in the MRR value and the SR 
value so that the null hypothesis can be rejected. Each 
variance between the two populations was not 
obtained randomly with a confidence level of 95%. 
These results prove that the characteristic equations 
obtained in MRR and SR modeling can predict the 
response with statistically significant. 

The t-test value shows that in modeling y1 (MRR), 
the variables that have a significant effect are x2 
(cutting speed), x3 (feed rate), and x4 (depth of cut), 
whereas two variables have a major impact on 
modeling y2 (SR), namely x3 (feed rate) and x4 (depth 
of cut). 

3.3  GA implementation 

There are three important factors in the optimiza-
tion process using the GA method, which are selec-
tion, crossovers, and mutations. However, the first 
step before determining the value and nature of each 
operator is to determine the solution set for the initial 
population form. 

The set of solutions must be made into dimension-
less values using Eq. 8 so that the upper and lower 
limits of the initial population in the GA optimization 
process can be seen on Tab. 6. 

 � 
! =

� "�# 

$
  (8) 

Tab. 6 Lower and Upper Limits of the Set of Solution 

Limit x1 x2 x3 x4 

Lower -0.949 -1.48 -1.12 -1.48 

Upper 0.949 1.48 1.72 1.48 

 
The conditions in Tab. 6 are used for the optimi-

zation process of MRR and SR. The value and charac-
teristic of each GA parameter can be seen on Tab. 7. 
The number of variables is determined according to 
the independent variables used, which are the tool 
nose radius (x1), cutting speed (x2), feed rate (x3), and 
depth of cut (x4). The double vector population type 
is chosen because the optimization process is carried 
out on integers. The size of the population is deter-
mined according to the values determined by 
MATLAB for optimization of fewer than 5 variables, 
namely 50. The use of top as an objective value scale 
characteristic is conducted to create a more viable new 
population with less diversity compared to rank char-
acteristics. Selection with the roulette wheel character 

is used to increase the possibility of selecting individ-
uals with higher fitness values so that it can speed up 
the optimization process. The elitism value of 2 is 
served to ensure the number of individuals that sur-
vived as a population in the next generation. This 
value is chosen because the greater the value used, the 
more likely it is to be trapped in the local optimal 
value. A small value provides a more accurate value 
and is close to the global optimal value [19]. High 
probability of crossovers with multi-point character 
can reduce the quality of new populations with high 
fitness values, resulting in poor offspring. In general, 
the range of probability crossover value is 0.4~1. Uni-
form characters are chosen because this character is 
used in the integer optimization process. The smaller 
the probability mutation value, the faster the optimi-
zation process could obtain convergent values. The 
termination criteria chosen are the stall generations 
with a value of 70 which aims to avoid the optimiza-
tion process that lasts too long. 

Tab. 7 GA Parameters 

Parameters Description Value 

# of independent var-
iables 

- 4 

Population 
Double vec-

tor 
50 

Scale of fitness Top 0.4 

Selection 
Roulette 

wheel 
- 

Elitism - 2 

Crossover Single point 0.7 

Mutation Uniform 0.001 

# of iteration 
Stall genera-

tions 
70 

MRR and SR 

In this study, GA was used to optimize MRR and 
SR. The greater the MRR value, the more optimal it is 
considered. However, to adjust to the current needs 
of the medical industry, certain limitations are applied. 
In this case, the maximum surface roughness which is 
acceptable for bone and metal pegs is 0.6 μm [20]. Fur-
thermore, the smaller the SR value, the more optimal 
it is considered. 

Equation limits on MRR optimization can be one 
of the termination conditions. If it is not fulfilled, the 
optimization process must be stopped. The boundary 
equation used in this optimization is a nonlinear ine-
quality constraint, as follows: 

 
         1.88 − 0.0501 '( − 0.0794 ') + 0.6 ', + 0.162 '- − 0.213 '(') − 0.188 '(', + 0.156 '('- +

         0.0616 ')', − 0.139 ')'- − 0.116 ','- ≤ 0.6  (9)  
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In optimizing SR, the limits on optimization are 
only the upper and lower limits of the set of solutions 
without any additional boundary equations. This is 
done to obtain the lowest possible SR value so that it 
can be considered optimal. 

Optimization results 

The optimization process is conducted with the 
help of MATLAB software. Eqs. 3 and 4 are used as a 
characteristic equation, the upper and lower limits of 

the solution set can be seen on Tab. 6, and the bound-
ary equation uses Eq. 9. The results on Tab. 8 are the 
most optimal results obtained from 5 trials. 

From the result of experiments as shown in Tab. 
3, it can be seen that SR > 0.6 μm. The optimization 
results prove that using the GA method, a combina-
tion of tool nose radius, cutting speed, feed rate, and 
depth of cut can be obtained which are all able to pro-
duce SR < 0.6 μm.

Tab. 8 Optimization Results of MRR and SR 

Unit 
Results 

MRR SR 
Process parameters Tool nose radius, rε mm 0.4 0.4 

Cutting speed, vc m.min-1 96.9 95 
Feed rate, f mm.rev-1 0.035 0.035 

Depth of cut, d mm 0.217 0.01 

Limit Surface roughness mm 0.59 - 

Objective function Material removal rate, MRR cm3.min-1 0.64 - 

Surface roughness, SR mm - 0.458 

3.4 Validation process and evaluation 

The validation process of the optimization results 
is carried out on the same machine as the experiments 
in the same environmental conditions. Tabs. 9 and 10 
show the comparison of optimization results and vali-
dation. 

MRR 

From Tab. 9, it can be seen the differences 
between optimized and validated process parameters 
used, which are 1.96% for cutting speed and 0.46% 
for the depth of cut. This is because the lathe used 
cannot be set at the cutting speed and depth of cut 
value according to the optimization results. After con-
ducting the confirmation experiment, the MRR from 
the validation is 4.69% smaller than the optimization 
results and the boundary SR value in the validation 
process is 5.08% smaller than the optimization results. 

Tab. 9 Comparison of MRR from Optimization and Validation 
Parameters Unit Optimization Validation Difference 

Tool nose radius, rε mm 0.4 0.4 - 
Cutting speed, vc m.min-1 96.9 95 1.96% 
Feed rate, f mm.rev-1 0.035 0.035 - 
Depth of cut, d mm 0.217 0.216 0.46% 
Material removal rate, MRR cm3.min-1 0.64 0.61 4.69% 

Surface roughness, SR mm 0.59 0.56 5.08% 

SR 

The SR validation process is performed using the 
process parameters resulting from the optimization 

process. From Tab. 10, the SR from the validation 
process is larger 6.99% compared to the optimization 
results and the MRR is 4.49% smaller than the optimi-
zation results. 

Tab. 10 Comparison of SR from Optimization and Validation 
Parameters Unit Optimization Validation Difference 

Tool nose radius, rε mm 0.4 0.4 - 
Cutting speed, vc m.min-1 95 95 - 
Feed rate, f mm.rev-1 0.035 0.035 - 
Depth of cut, d mm 0.1 0.1 - 

Surface roughness, SR mm 0.458 0.49 6.99% 

Material removal rate, MRR cm3.min-1 0.178 0.17 4.49% 
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The GA optimization and validation results of 
AISI 316L dry turning shown in Tab. 9 and Tab. 10 
prove the usefulness of the model for optimal process 
parameters and processing performance. The optimi-
zation process of MRR and SR is close to the confir-
mation experiment, therefore, the optimization pro-
cess using the GA method is considered to be effec-
tive. 

 Conclusions 

The application of GA optimization for MRR and 
SR of AISI 316L under the dry turning process is pre-
sented in this paper. The model development consid-
ers four process parameters, namely the nose radius, 
cutting speed, feed rate, and depth of cut. The devel-
oped MRR and SR models were tested by F-test and 
t-test, and it was found that the 95% confidence inter-
val was met. Cutting speed, feed rate, and depth of cut 
have a significant effect on MRR, while feed rate and 
depth of cut have a major impact on SR. 

According to the modeling, optimization, and val-
idation of the MRR and SR of AISI 316L in the dry 
turning process by the GA method, the following con-
clusions can be drawn: 

· The GA method can function well for the op-

timization process in the dry turning process. 

· The optimal MRR can be obtained with a pro-

cess parameter of 0.4 mm for a tool nose ra-

dius; 96.9 m.min-1 for cutting speed; 0.035 

mm.rev-1 for feed rate; and 0.217 mm for the 

depth of cut, meanwhile, for the optimal SR, 

it is required for the following; a process pa-

rameter of 0.4 mm for a tool nose radius; 95 

m.min-1 for cutting speed; 0.035 mm.rev-1 for 

feed rate; and 0.1 mm for the depth of cut. 

· The MRR from the optimization process is 

0.64 cm3.min-1 which is 4.69% larger than the 

validation result. While the optimized SR is 

0.458 μm which is 6.99% smaller than the val-
idation result. 

· The optimum value of the MRR and SR can 

be predicted with less than a 7% deviation 

from the actual value. 
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