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A four factors and three levels orthogonal milling force (MF) test is designed, which qualitatively obtains 
the influence of four factors, namely workpiece material, workpiece diameter, milling speed and feed per 
tooth, on MF of the new cold saw blade milling cutter (NCSBMC), then further verifies the reliability of 
test data with simulation analysis of MF. The multiple linear regression analysis and deep neural network 
(DNN) are used to accurately fit and predict the magnitude of MF in three directions of NCSBMC, 
taking into account the influence of workpiece material factors on MF. Compared with the results of 
empirical formula, DNN has higher prediction accuracy. The research results provide theoretical 
guidance for the optimization of milling parameters in actual machining process. 
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 Introduction 

Compared with the traditional hot saw blade 
milling cutter (THSBMC), NCSBMC has the advan-
tages of high sizing accuracy, high productivity and 
good quality workpiece cross-section [1]. Therefore, it 
is widely used in the machining of various profiles, pi-
pes and solid bar materials [2]. The teeth of NCSBMC 
are made of Ti(C,N)-based metal-ceramic material, 
their hardness can reach about 92 HRC, which is 
higher than the hardness of high-speed steel saw blade 
milling cutter of 60-70 HRC and carbide saw blade 
milling cutter of 76-82 HRC. During milling process, 
NCSBMC exhibits lower temperature, lower speed, 
larger feed and higher saw removal rate than others 
[3], so it has important academic significance and en-
gineering application value for MF study of 
NCSBMC. 

At present, MF model prediction mainly includes 
analytical method, empirical formula method and neu-
ral network method, each of which has its own limita-
tions. Due to certain limitations in study of milling me-
chanism, individual physical parameters in milling pro-
cess are difficult to accurately obtain, so it is difficult 
to accurately describe milling process using mathema-
tical models, which seriously affects the prediction ac-
curacy of analytical model [4]. The establishment of 
empirical formulas relies on large amounts of accurate 
experimental data, incidental measurement errors and 
experimental errors will have a great impact on esta-
blishment empirical formulas. In addition, empirical 

formulas rarely consider the influence of material cha-
racteristics on MF. Although the prediction accuracy 
of DNN model depends on training samples, DNN 
model itself has the characteristics of self-adaptation, 
self-organization, self-learning, nonlinear mapping, 
fault tolerance and correction capabilities, and high-
speed parallel computing capabilities [5]. Since there is 
a high nonlinear relationship among milling parame-
ters, workpiece material and MF, and DNN is very 
powerful in nonlinear modeling [6], the use of DNN 
model to predict MF has obvious advantage. 

In traditional MF research area, S. Campocasso et 
al [7] performed the same heat treatment and mecha-
nical performance treatment on specific five proces-
sing materials, and obtained the correlation coefficient 
between mechanical performance and cutting force 
through cutting experiments and mechanical perfor-
mance comparison analysis. János Kundrák et al [8] 
studied the effect of feed on the MF and chip size ratio 
of face milling at different milling speeds. Geng et al 
[9] studied the effect of milling speed, feed per tooth 
and radial depth on the MF by simulating the milling 
of GH4169 nickel base superalloy with finite element 
software. Li et al [10] measured the force and net 
power of the saw blade during sawing process and ob-
tained the distribution of sawing force within the sa-
wing arc zone by studying the location of the point of 
action of the combined sawing force. Hu et al [11] re-
viewed the cutting force modeling method to provide 
a theoretical basis for cutting simulation research. 
Tang et al [12] calculated and studied the force and 
cutting power of the saw blade during cold sawing, 
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and Zhu et al [13] established a transient mechanical 
model that can accurately describe the cut in and cut 
out of each tooth of the milling cutter, and concluded 
that the axial force can be apply to predict the wear of 
milling cutter. S. Turchetta and L. Sorrentino [14] used 
a CNC machining center to study the effect of chan-
ging machining parameters on stone cutting. 

Due to the rapid development of artificial intelli-
gence, scholars and experts have introduced neural 
networks to study MF. Kais I. Abdul-lateef Al-
Abdullah et al [15] accorded to the experimental data 
of artificial tissue milling with bone milling cutter, the 
corresponding force and temperature models were es-
tablished by using artificial neural network (ANN). Li 
et al [16] used a neural network model to predict tool 
wear and cutting force, this work concluded that the 
neural network model is able to consider more influ-
ential factors in the machining process and has a 
higher prediction accuracy than the empirical formula. 
Wang et al [17] established a “transfer network” model 
for cutting force prediction based on the simulation 
results. Compared with the neural network model 
based on experimental samples, the transfer network 
has better performance in the case of sufficient data. 
However, migration learning research is currently 
immature and it is difficult to choose among the avai-
lable training models for the particular task at hand. 
Ali Yeganefar et al [18] studied the prediction and op-
timization of surface roughness and cutting force in 
aluminum alloy milling operations using four met-
hods, and this paper concluded that the neural 
network had higher prediction accuracy compared to 
support vector regression and regression analysis. The 
literature [15-18] showed that neural network models 
are very effective in predicting MF and neural network 
has great potential for application and development in 
the field of machining. 

According to the literature review, we can know 
that there are few systematic research papers about the 
effect of workpiece material on MF. In this paper, 
workpiece material, workpiece diameter, milling speed 
and feed per tooth are chosen as the input variables to 

predict MF of NCSBMC based on regression analysis 
and DNN.

 Experiment and simulation 

2.1 Test platform construction 

A four factors and three levels orthogonal test was 
designed to examine the effect of four factors on the 
MF of NCSBMC. The metrics are the magnitude of 
FX, FY and FZ. The four factors and three levels for 
orthogonal tests are shown in Tab. 1. 

 

Fig. 1 Workpiece materials and diameter.

Tab. 1 Four factors and three levels orthogonal test 

Factors 
Levels 

Workpiece 
material(M) 

Workpiece diameter 
(D)(mm) 

Milling speed 
(R)(RPM) 

Feed per tooth 
(W)(mm) 

1 45steel 32 96 0.020 

2 40Cr 36 110 0.025 
3 Q235B 38 115 0.030 

 
A NCSBMC with 60 teeth, tool diameter 460 mm 

and saw teeth rake angle -9°, rear angle 5.5°, was used 
to sawing solid round bar under dry condition. MF 
tests were performed on an intelligent circular sawing 
machine (EVERSING P-150B, power 15 kW). A 
three-way dynamometer (Kistler 9257B) with a 
sampling frequency of 20 KHz was used to obtain the 

milling forces in Cartesian coordinates in all three axis 
directions. The workpieces were placed, positioned 
and clamped in a self-designed fixture, which was fi-
xed to the dynamometer by means of four M8 screws, 
and the dynamometer was fixed to the test platform. 
Workpiece materials and MF experimental device are 
shown in Figs. 1 and 2, respectively. 
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Fig. 2 MF experimental device 

2.2 Experimental data processing and analysis 

L9 (34) was chosen to design the MF experiment, 
and 9 groups of machining were performed, with each 
group repeated three times, then the three maximum 
MF obtained for the FX, FY and FZ in each group were 
averaged to obtain MF sizes for the FX, FY and FZ of 
NCSBMC as shown in Tab. 2. 

According to the orthogonal design data proces-
sing method, the K-values and the mean of the K-va-
lues were calculated for MF measurement data of 
NCSBMC, and MF numerical calculation values of 
NCSBMC are shown in Tab. 3.

Tab. 2 Experimental values for measuring MF of NCSBMC 

Column 
Group 

M 
1 

D 
2 

R 
3 

W 
4 

Maximum MF (N) 
FX FY FZ 

1 45# 32 96 0.020 23.582 161.694 379.150 

2 45# 36 110 0.025 24.577 194.348 484.780 

3 45# 38 115 0.030 28.768 222.858 547.856 

4 40Cr 32 110 0.030 65.111 233.553 467.518 

5 40Cr 36 115 0.020 26.531 159.030 367.987 

6 40Cr 38 96 0.025 33.011 195.684 474.098 

7 Q235 32 115 0.025 37.317 144.701 419.107 

8 Q235 36 96 0.030 40.957 182.088 526.890 

9 Q235 38 110 0.020 43.558 170.894 424.363 

Tab. 3 Numerical calculation of MF for NCSBMC 

      Factors 
Indexes 

FX (N) FY (N) FZ (N) 

M D R W M D R W M D R W 

K1 77 126 98 94 579 540 540 492 1412 1266 1380 1172 

K2 125 92 133 95 588 536 599 535 1310 1380 1377 1378 

K3 122 105 93 135 498 589 527 639 1370 1446 1335 1542 

`k1 26 42 33 31 193 180 180 164 471 422 460 391 

`k2 42 31 44 32 196 179 200 178 437 460 459 459 

`k3 41 35 31 45 166 197 176 213 457 482 445 514 

 

Plotting the values of`k1,`k2 and`k3 from Tab. 3, 
we can obtain the relationship between four factors 
and three indicators, as shown in Fig. 3. In Fig. 3, FZ 
is the largest in milling process, followed by FY, and 
FX is the smallest. Overall, the feed per tooth has ob-
vious influence on MF in three directions. A primary 
and secondary analysis of the four influencing factors 
based on the magnitude of FX, FY and FZ fluctuations, 
as follows: 

The influence on the FX is as follows: workpiece 
material > feed per tooth > milling speed > working 
diameter. 

The influence on the FY is as follows: feed per to-
oth > workpiece material > milling speed > working 
diameter. 

The influence on the FZ is as follows: feed per to-
oth > workpiece diameter > workpiece material > 
milling speed. 

2.3 Comparative analysis of simulation and experi-
ment 

Taking the first group of parameters in Tab. 2 as 
an example, the experimental results and simulation 
results were compared and analyzed under the same 
conditions. The MF of NCSBMC was simulated in 3D 
using AdvantEdge finite element simulation software. 
In the simulation process, in order to reduce the grid 
division and calculation time, the NCSBMC model 
was simplified as shown in Fig. 4. After polynomial 
fitting to obtain MF simulation results. According to 
the inductive analysis of experimental data and simu-
lation data, by taking the average value and ignoring 
the influence of the coordinate system setting on the 
positive and negative values, MF experimental data of 
NCSBMC is compared with the simulation data as 
shown in Fig. 5. 



August 2021, Vol. 21, No. 4 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

indexed on: http://www.scopus.com 459 

20

30

40

50

165

180

195

210

540

500

460

420

380

45# Q235B40Cr Φ32 Φ38Φ36 96 110 115 0.02 0.025 0.03

Workpiece material Workpiece diameter (mm) Milling speed (RPM) Feed per tooth (mm)

Force -X (N) Force -Y (N) Force -Z (N)

 

Fig. 3 Relationship between four factors and three indicators. 

 
Fig. 4 MF 3D simulation of NCSBMC 

 
Fig. 5 Comparison of experimental and simulation values for MF 

Fig. 5 shows that for 45 steel with a diameter of 
φ32mm, NCSBMC takes about 15 seconds to cut off 
the workpiece from the entry of the teeth. For FY and 
FZ, the experimental and simulation curves are gene-
rally downward parabolic, and the milling time corre-
sponding to the peak of MF is roughly between the 
4th and 8th seconds, when NCSBMC is involved in 
milling the largest number of teeth and the largest 
force. For FX, the experimental values fluctuate in the 
range of about 20N due to external conditions such as 
vibration, while the simulation values are almost zero. 

The peak of MF obtained from simulation is 
slightly larger than that obtained from experiment, and 
the difference of FZ is slightly obvious, however, by 
comparing simulation curve of MF with experimental 
curve, it can be seen that the overall trend of change 
is close to each other. Compared with simulation data, 
the accuracy of experimental data is verified, which 
provides accurate and reliable data for the accurate 
prediction of MF model. 

 MF model prediction 

3.1 Regression analysis 

The relationship between the milling parameters 
and MF can be expressed in the form of an exponen-
tial function [19-21]. There are many factors that 
affect MF, this paper only considers four factors: 
workpiece material (M), workpiece diameter (D), 
milling speed (R) and feed per tooth (W). For 
NCSBMC, the empirical formula for the MF is shown 
in equation (1). 

 i i i ia b c d

i iF K M D R W=   (1) 

Where: 
Fi represents MF in i-direction [N], 
Ki is i-direction determines the combined 

correction coefficient factor for milling conditions, 
friction coefficient, etc.[-], 

ai, bi, ci and di are the unknowns to be solved [-]. 
Taking both sides of MF expression in Eq. (1)

 g lg lg lg lg lgi i i i i il F K a M b D c R d W= + + + +   (2) 

Suppose E = lg F, X0 = lg K, X1 = lg M, X2 = lg D, 
X3 = lg R, X4 = lg W, we can get Eq. (3)  

 0 1 2 3 4i i i i iE X a X b X c X d X= + + + +   (3) 

Using the orthogonal test data in Tab. 2, the test 
values corresponding to the FX, FY and FZ were fitted 
by multiple linear regression analysis with the help of 
Matlab mathematical calculation software. The corre-
sponding Rockwell hardnesses are used as fitting data 
for the workpiece materials, and the Rockwell hard-
ness of 45 steel, 40Cr, Q235B is 28HRC, 32HRC, and 

15HRC, respectively. In order to eliminate differences 
between data orders and to reduce errors in data pro-
cessing, the data in Tab. 2 are normalized to the corre-
sponding values distributed between [0,1]. After 
fitting the solution to the value of each coefficient in 
the expression, the empirical formula of FX, FY and FZ 
can be obtained as shown in equation (4). 
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To verify the accuracy of Eq. (4), on the one hand, 
the prediction values of MF are compared with the ex-

perimental values, as shown in Tab. 4, where F�X , F�Y 

and F�Z represent the predicted values of MF in three 
axes obtained from Eq. (4). ΔFX, ΔFY, and ΔFZ repre-
sent the deviation values between the predicted MF 
and the experimental MF in Tab. 2. 
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X X X

Y Y Y
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F F F

F F F

D = -

D = -

D = -

  (5) 

From Tab. 4, the overall MF predictions are close 
to the experimental values, with the best prediction ac-
curacy for the FY, followed by the FZ. 

On the other hand, the empirical formula is analy-

zed for the rationality of the residual error. The resi-
dual analysis diagram of the FX, FY and FZ empirical 
formula of NCSBMC is shown in Fig. 6, where 6(a), 
6(b), and 6(c) are the results of FX, FY and FZ residual 
analysis, respectively. 

As we can see from Fig. 6, the residuals of empiri-
cal formula for FX, FY and FZ are uniformly distributed 
near the zero line and within the confidence interval, 
which means that the regression model is in accor-
dance with the original data. The significance test va-
lues of FX, FY and FZ regression equation are 5.3840, 
39.9559 and 15.1665 respectively, which are all greater 
than 0, and meet the requirement of data fit. From the 
values, the best prediction accuracy of the regression 
equation for the FY is obtained, followed by the FZ. 
According to Tab. 4 and Fig. 6, the empirical formula 
for MF of NCSBMC can be used as a theoretical refe-
rence and guide in actual production.

Tab. 4 Prediction values and deviation values of MF 

Prediction values of MF(N) Deviation values of MF(N) 
 F�X F�Y F�Z ΔFX ΔFY ΔFZ 

1 16.693 158.500 367.980 -6.889 -3.194 -11.170 

2 16.711 188.320 458.090 -7.866 -6.028 -26.690 

3 16.114 220.060 536.250 -12.654 -2.798 -11.606 

4 11.783 235.490 472.780 -53.328 1.937 5.262 

5 17.101 160.170 389.450 -9.430 1.140 21.463 

6 17.446 202.930 458.070 -15.565 7.246 -16.028 

7 20.382 147.950 424.450 -16.935 3.249 5.343 

8 23.291 180.020 539.330 -17.666 -2.068 12.440 

9 29.88 120.660 417.690 -13.678 -50.234 -6.673 

 
a) b) c) 

Fig. 6 Residual error analysis diagram of MF empirical formula.

3.2 DNN MF prediction 

A neural network is an extension based on a per-
ceptual machine, while a DNN can be understood as 
a neural network with many hidden layers. DNN is di-
vided by the location of different layers, neural 
network layers can be divided into three categories, 
input, hidden and output layers, and layers are fully 
connected. The network architecture of DNN in this 
paper is shown in Fig. 7, which includes an input layer, 
two hidden layers and an output layer. The input layer 

is the four characteristic values in Tab. 2. The two hid-
den layers both contain 64 neurons, and the output 
layer is the predicted value of FX, FY and FZ.  

Seven groups of data in Tab. 2 were selected as the 
sample data of the training model, and the remaining 
two groups were used as the test group to test the mo-
del. The MinMaxScaler normalization was performed 
on the input data, and the learning rate was set to 0.1. 
We use Relu activation as a non-linear activation 
function, it allows the DNN to introduce sparsity on 
its own, while greatly improving training speed. 
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Fig. 7 Schematic of a DNN structure used in this study 

 
DNN's forward propagation algorithm uses multi-

ple weighted factor matrices, bias vector to perform a 
series of linear and activation operations on the input 
value vector, starting at the input layer and scaling ba-
ckward layer by layer until it reaches the output layer. 

The back propagation (BP) of the DNN is used to 
calculate the error at each layer of the forward propa-
gation, and the weights and deviations are updated by 
minimizing the Loss function based on the error value. 

 ( )21

2
j j

j N

Loss d y
Î

= -å   (6) 

Where: 
Loss using mean squared error (MSE) and Mean 

Absolute Error (MAE) as evaluation indicators [-], 
N represents all neurons in the output layer [-], 
dj and yj are the expected and output values of the 

j-th neuron in the output layer, respectively [-]. 
 
In order to prevent over-fitting and excessive lear-

ning rate leading to non-convergence, and to speed up 
the learning process and improve the tuning effi-
ciency, when the degree of Loss on the training set is 
less than a certain threshold, two methods, Early stop-
ping and callback function (ReduceLROnPlateau), are 
used to stop further training and prevent the accuracy 
on the test set from decreasing as a result of further 
training. The change in the number of training sessi-
ons and the Loss value is shown in Fig. 8.  
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Fig. 8 Changes in the number of training sessions and Loss value 

 
In Fig. 8, the horizontal coordinate represents the 

number of training sessions, the vertical coordinate re-
presents the Loss value. The blue line represents the 

change in the Loss value with the number of training 
sessions on the training set, and the orange line repre-
sents the change in the Loss value with the number of 
training sessions on the validation set. As shown in 
Fig. 8, the Loss value converges as the number of trai-
ning sessions increases. 

In DNN model, the data is divided into a training 
set and a testset. In the case of insufficient data, in or-
der to make full use of the data to test the effect of the 
algorithm, the data is divided into five groups, one of 
which is used as a testset at a time, while the remaining 
four groups are used as a training set. The K-fold 
cross-validation each data has only one chance to be 
classified into the training or testset during each itera-
tion, the validation and testset alternate with each 
other to form a complementary set loop, with the re-
sult of the model equal to the average of four iterati-
ons of MSE and MAE, as shown in Fig. 9. 
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Fig. 9 Five-fold cross-validation in four iterations 
 
The results of K-fold cross-validation are shown in 

Tab. 5, for the MSE and MAE, respectively. It can be 
seen from Tab. 5 that, except for the fluctuations in 
the MAE and MSE values of the 4th iteration, the 
MAE and MSE values of the remaining three iterati-
ons have relatively small fluctuations. 

Tab. 5 DNN model MF prediction values 

Test 
fold 

MSE MAE 

D1 259.7263 11.3574 
D2 176.0991 11.3406 
D3 233.6315 11.1843 

D4 931 22.8447 

 Comparison and discussion 

The MSE and MAE of MF empirical formula are 
shown in Eqs. (7) and (8), the MSE and MAE of the 
DNN MF prediction model are shown in Eqs. (9) and 
(10), and the r of both MF empirical formula and the 
DNN MF prediction model are shown in Eq. (11) in 
combination with the calculations in Tab. 4. 
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Where: 

FXi
, FYi

 and FZi
 are milling forces in the three di-

rections of X axis, Y axis and Z axis in Tab. 2, respecti-
vely [N],  F!Xi

, F!Yi
 and F!Zi

 are the milling forces fitted by the 

multiple linear regression analysis in the directions of 
X, Y and Z in Tab. 2 [N], where the value of i ranges 
from 1 to 9 [-], 

F"X F"Y and F"Z are the average values of milling 
forces in the directions of X, Y, and Z in Tab. 2 [N], 

r is the correlation coefficient [-]. 
Tab. 6 shows the calculation results of MSE, MAE 

and r values of the MF empirical formula and the 
DNN MF prediction model. Three performance me-
trics are analyzed by comparing DNN and regression 
analysis. It is obvious that DNN far outperformed re-
gression analysis for all the responses. 

Tab. 6 Performance metrics comparison of regression analysis and 
DNN model 

 MSE MAE r 

regression analysis 980.616 l38.731 0.775 

DNN model 400.115 14.18 0.908 

 Conclusion 

Experimental research on MF was carried out by 
means of a four factors and three levels orthogonal 
test method. According to the results of MF test in 
this study to predict MF of NCSBMC with regression 
analysis and DNN model. The findings are summari-
zed as follows: 

1) Workpiece diameter, workpiece material, milling 
speed and feed per tooth all have an impact on MF, 
with feed per tooth having the greatest impact, 
followed by workpiece diameter, workpiece material 
and milling speed. 

2) According to experimental research, NCSBMC 
FZ range is 300-500N, FY range is 150-200N, and FX 
range is 20-50N. In actual production, for 20 steel, 

Q235B and other good processing performance with 
smaller diameter of low carbon steel workpiece, we 
can improve the feed per tooth to improve production 
efficiency. For 40Cr, stainless steel, die steel and other 
poor processing performance with larger diameter 
workpiece, in the premise of not affecting the produ-
ction efficiency, processing parameters should choose 
smaller feed per tooth and higher speed. 

3) A five-fold cross-validation with four iterations 
is implemented for the DNN model, in order to make 
full use of the data to test the effect of algorithm in 
case of insufficient sample size, which effectively 
avoids the occurrence of over-fitting and under-lear-
ning states, and the final fit results are useful for relia-
ble evaluation of the model. 

4) The DNN model far outperformed regression 
analysis for MF prediction for MAE, MSE and r me-
trics in the absence of sufficient data. The self-learning 
and adaptive capabilities of DNN makes the pre-
diction accuracy higher than that of empirical formu-
las. Compared with the empirical formula of linear re-
gression analysis, the DNN has better scalability. The 
empirical formula fitted by the linear regression analy-
sis needs to presuppose an exponential relationship 
between MF and the machining parameters, while 
DNN is more capable of modeling and processing 
non-linear models. 
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