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Vehicle Routing Problem is a common problem in logistics, which can simulate in-plant and out-plant 
material handling. In the article, we demonstrate a Vehicle Routing Problem, which contains period, 
time window and multiple depots. In this case, customers must be served from several depots. The posi-
tion of the nodes (depots and customers), the demand and time window of the customers are known in 
advance. The number and capacity constraint of vehicles are predefined. The vehicles leave from one 
depot, visit some customers and then return to the depot. The above-described vehicle routing is solved 
with construction algorithms and Ant Colony algorithms. The Ant Colony algorithms are used to improve 
random solutions and solutions generated with construction algorithms. According to the test results the 
Elitist Strategy Ant System and the Rank-Based Version of Ant System algorithms gave the best solutions. 
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 Introduction 

The most important task of the logistic is delive-
ring the right goods at the right time to the right place. 
The Vehicle Routing Problem (VRP) models these 
processes. Over the years, there have been many vari-
ations of the problem, modelling in-plant, out-plant 
material handling or a complete supply chain. The ar-
ticle presents the Vehicle Routing Problem with Time 
Window, Period and Multiple Depots which is suita-
ble for in-plant and also for out-plant material han-
dling. For the problem, we know the positions of de-
pot and customers. Customers also have a need for 
goods that must be met within a time window. The 
vehicles start from one warehouse (depot) to serve the 
needs of the customers and then return to the ware-
house (depot). During the task, customers do not have 
to be visited once, but several times within a period. 
The goal is to minimize the route taken by vehicles. 

 Vehicle Routing Problem  

The VRP is a logistical problem, which deals with 
the delivery and picks up the products. In case of the 
basic problem the position of one depot, the position 
and demand of the customers, the number and capa-
city constraint of the transportation units (vehicles) 
are known in advance. The vehicles start their route at 
the depot. After that, visits some customers (satisfy 
their demand) and then return to the depot. The ob-
jective function is the minimization of the length of 
the route. Over the years, many VRP variations have 

been developed that adapt to each logistics task. In the 
following, some type of Vehicle Routing Problems are 
described. 

Capacity Constrained VRP [1] is a type when the 
vehicles have some capacity limit. The Single Depot 
VRP [2] is a VRP when the vehicles leave from a single 
depot. In case of Multi-Depot VRP [2], there are mul-
tiple depots. The vehicles leave the route from a de-
pot, and after visited some customers, the vehicles 
return to the depot, from which they leaved. In the 
case of VRP with Inter-Depot Routes [3], the vehicles 
can return to any of the depots. Open VRP [4] is a 
type when the vehicles do not have to return to the 
depots. In the case of Environmentally Friendly VRP 
[5], environmentally-friendly vehicles transport the 
products and in the case of Electric VRP [6] electric 
vehicles. When vehicles do not only deliver products 
from the depot to the customers but also collect pro-
ducts from the customers to the depot, we call it Pick-
up and Delivery VRP [7]. In the case of Periodic VRP 
[8], the customers must be visited periodically. In the 
case of VRP with Time Window [9] the customers 
have a time window. The time window can be hard 
[10] and soft [11]. In the case of VRP with Soft Time 
Window [11] the customers can be visited outside of 
the time window, but in this case, we get penalty 
points. In the case of VRP with Stochastic Demand 
[12], the probability of the demands is known in adva-
nce. In the case of VRP with Fuzzy Demands [13], the 
demands are fuzzy numbers. In the case of Cumula-
tive VRP [14] not the minimization of the length of 
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the route, but the minimization of the waiting time is 
the objective function. In the case of VRP with Cross-
Docking [15] first the products are picked up from the 
customers, and after all products are picked up, the 
products are transported to other customers. In the 
case of Site-Dependent VRP [16] certain customers 
can only be visited by certain types of vehicles. Se-
lective VRP [17] is a VRP when not all customers must 
be visited. Those customers are visited who are the 
best in terms of profit. In the case of Two-Echelon 
VRP [18] the products are delivered from the depot to 
intermediate locations (satellites) and then from the 
intermediate locations to the customers. VRP with 
Traffic Jams [19] also takes into account the traffic 
factors. Rechargeable VRP [20] is a type when electric 
vehicles satisfy the demands of the customers. In this 
case, the vehicles must be recharged. VRP with Peri-
shable Food Products Delivery [21] is a case when pe-
rishable foods are delivered. 
Vehicle Routing Problems are optimization tasks 
belonging to the NP hard category. VRP is one of the 
best known optimization tasks (which also affects pro-
duction), but of course other manufacturing opti-
mization tasks can be found in the literature, such as 
production process planning [22], production flow 
[23]. 

 Vehicle Routing Problem with Time Win-
dow, Period and Multiple Depots 

In case of the Vehicle Routing Problem with Time 
Window, Period and Multiple Depots the positions of 
the customers and depots to be visited are known in 
advance. Customers are also given with special de-
mands and a time window, which means when their 
demands can be served. There is also a service period. 
All customers have been given the number of times 
they should be served per period. There are also pos-
sible period-time service combinations. One of these 
can be selected. The number of vehicles are also given, 
as is the capacity limit of the vehicles. The length of 
vehicle routes is also maximized, and vehicles can de-
liver a single type of goods to customers. Figure 1 
shows an example of a problem. The figure shows two 
depots, denoted by D1 and D2. From the D1 depot, 
400 items can be transported daily and 400 items from 
the D2 depot. The number of customers is 9; the 
customers are indicated with numbers. Customers 
have time windows and demands. The first customer 
has 30 demand and the [10, 50] time window the se-
cond one has 10 demand, and the [30, 70] time win-
dow, the third has 75 demand, and [60, 120] time win-
dow, the fourth is 75 demand and [30, 150] time win-
dow, the fifth is 10 demands and [20, 100] time win-
dow, the sixth is 200 demand and [40, 100] time win-
dow the ninth has 100 demand and [40, 80] time win-

dow. The example shows a four-day period. Blue-la-
belled customers should be visited daily (four times 
per period), orange-labelled every two days (twice per 
period), and white candidates four days (once per pe-
riod). In this example, two vehicles visit customers. 
The capacity limit for vehicles is 300 units. Vehicles 
start from the D1 or D2 depots, visit some customers 
(serving the customers' demands within the time win-
dow) and return to the depot. In Figure 1, on the 1st 
day, the first vehicle starts from the D1 depot, and 
then visits the first, then the 8th, then the 4th custo-
mer, and then returns to the D1 depot. The second 
vehicle starts from the D2 depot, then visits the custo-
mer 5, then returns to the customer 3 and then to the 
D2 depot. On day 2, the first vehicle starts from the 
D1 depot and then visits customer 1, then customer 2 
and 4, and then returns to the D1 depot. On the day 
2, the second vehicle starts from the D2 depot, and 
then visits the customer 5, then the customer 9 and 3, 
then return to the D2 depot. On day 3, the first vehicle 
starts from the D1 depot and then visits customer 1, 
then customer 8 and 4, and then returns to the D1 
depot. The second vehicle starts from the D2 depot, 
then visits customer 5 and 7, and then returns to the 
D2 depot. On day 4, the first vehicle starts from the 
D1 depot, then customer 1 and 2 are visited, and then 
returns to the D1 depot. Then, starting from the D1 
depot, visits customer 6 and 4 and returns to the D1 
depot. The second vehicle starts from the D2 depot, 
then visits customer 5 and 9, and then returns to the 
D2 depot.  

 
Fig. 1 Vehicle Routing Problem with Time Window, Period 

and Multiple Depots 

3.1 The mathematical model of the Vehicle Routing 
Problem with Time Window, Period and Multiple 
Depots  

In this subsection, we present the mathematical 
model of the Vehicle Routing Problem with Time 
Window, Period and Multiple Depots [24]. 

The following indices were used to describe out 
model: 
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i: customer index 

j: customer index 

r: depot index 

l: period day index 

k: vehicle index 

!:  index set of the depots, where ! =

{1,2, … , m},| | = m, so the number of depots is in-

dicated with m  

!: index set of the customers, where ! = {m +
1, m + 2, … , m + n} , |!| = n , so the number of 

customers is indicated with n 

ℕ: index set of positions. The positions consists all 
depots and all customers, so the index set of the posi-
tions is the union of the index set of the depots and 
the index set of the customers: 

 ℕ:  ∪ ! (1) 

%: index set of the vehicles, % = {1,2, … , p} |%| =
p, so the number of vehicles is indicated with p,  The 
index set of the vehicles is the union of the index sets 
of each outgoing-incoming vehicles of the depots: 

 % = ⋃ %'(')*  (2) 

-: index set of the possible visits within the service 

period, where - = {1,2, … , t}, |-| = t, so the number 
of possible visits within the service period is indicated 

with t. 
ℂ: set of capacity constraints of the vehicles, where 

ℂ = {c*, c/, … , c0}. Each vehicle has a capacity limit 

for the products to be transported. The capacity limit 

of the vehicles must be respected. 

 3- means the set of the maximum length of the 

trip, where 3- = {dl*, dl/, … , dl0}. Each vehicle has 

a limit for the length of their trip. This limit must be 
also respected. 

q4: the demand of customer i. Each customer can 
have one product demand, beacuse there ise one type 
of product in our system. 

s4: the service time of customer i. Each customer 
can have a service time. Service time can mean the un-
loading time of products from the vehicles, the admi-
nistration time of the products etc. 

v4: the frequency of visits customer i in a period. 
The customers must be visited periodically. The 
frequency of visits is an important component; it de-
termines the total supply of products to each custo-
mer. 

 [a4, b4]: the time window of the customer i. The 
demand of the customers must be satisfied within a 

time window, where a4 means the earliest service time, 

and b4 is the latest service time. The time window va-
ries from customer to customer.  

d46: the distance between node i and j 
M: high constant for the sub tour elimination 

Z: the value of the objective function. Our ob-
jective function means the route minimization.  

A decision variable must also be defined to define 
constraints and objective function. The decision vari-
able can be written with the following way:

 x4678 = 91, if vehicle k in day l travels from node i to j
0, else  (3) 

The starting of the service time of the customer i. 
in the day l. with the vehicle k.  
 y478 ∈ ℝ? y478 ∈ [a4, b4 − s4]   (4) 

where i means the index of the node, k means the 

index of the vehicle and l means the period day index. 
The objective function, which must be minimized, 

can be written in the following way: 

 Z = ∑ ∑ ∑ ∑ d46x4678B8)*
0
7)*

(?C6)*(?C4)*    (5) 

in the equation d46  means the distance between 

node i and j, x4678 is the decision variable of the trave-

ling of vehicle k in day l from node i to j directly. In 
this equation all nodes must be considered (not only 
the customers, but the depots also be included). All 
vehicles and all periods must be taken into account in 
the amount.  

Our system contains 9 constraints, which are pre-
sented below. 

 
Constraint 1: One vehicle can visit each customer 

one day and after that visits the following customer.  

 ∑ ∑ x4678 ≤ 10
7)*

(?C4)*   ∀j ∈ !, ∀l ∈ -  (6) 

 ∑ ∑ x4678 ≤ 10
7)*

(?C6)*   ∀i ∈ !, ∀l ∈ -   (7) 

The first equation of the constraint shows that the 
sum of the number of input edges is 1 or 0 per period. 
This means, that a customer can be visited by only one 
vehicle in a period day. The second equation of the 
constraint shows that the sum of the number of out-
going edges is 1 or 0 per period.  

Constraint 2: Vehicles leave a depot and than it 
must arrive at the same depot after visiting customers.  

 ∑ x4678 = 1(?C6)(?*  ∀k ∈ %4, ∀i ∈  , ∀l ∈ -  (8) 

 ∑ x4678 = 1(?C4)(?*  ∀k ∈ %4, ∀j ∈  , ∀l ∈ -  (9) 

The first equation demonstrates the incoming ed-
ges of the depots, and the second equation means the 
outgoing edges. 

Constraint 3: Route continuity constraint is an im-
portant constraint. If a vehicle visits a node, after the 
visition it must leave that.  
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 ∑ x4'78(?C4)* = ∑ x'678(?C6)*  ∀k ∈ %, ∀r ∈ !, ∀l ∈ -  

(10) 

The equation means, that the incoming edges of 
each nodes must be equal with the outcoming edges 
of each nodes. This constraint concerns any nodes, ve-
hicles and periods. 

Constraint 4: Time window constraint is an impor-
tant constraint; it determines the order of services of 
vehicles. The product demand of the customer cannot 
be satisfied before and after the time window. Each 
customer can have own time window.  

 a4 ≤ y478 ∀k ∈ %, ∀i ∈ ℕ, ∀l ∈ -  (11) 

 y478 + s4 ≤ b4 ∀k ∈ %, ∀i ∈ ℕ, ∀l ∈ -  (12) 

In the equation a4 means the earliest time of the 

service, and b4 means the latest time of the service. y478 
means the starting of the service time of the customer 

i in the day l with the vehicle k. s4 indicates the service 

time of customer i . The service can be performed 
within the time window.  

Constraint 5: Sub-tour elimination provides a fe-
asible tour.  

 y478 + s4 − y678 ≤ MG1 − x4678H  ∀k ∈ %, ∀i ∈ ℕ, ∀i ∈ !, ∀l ∈ -   (13) 

In the equation M means a big positive integer 
Constraint 6: The capacity constraint of the vehicle 

can be also taken into account.  

 ∑ q4 ∑ x4678(?C6)*(?C4)(?* ≤ C8 ∀k ∈ %, ∀l ∈ -  (14) 

In the equation q4 means the product demand of 

customer i, x4678 is the decision variable, and C8' is the 

capacity limit of the vehicle. Based on the equation 
each vehicle must comply with its capacity limit in 
each period.  

Constraint 7: The maximum length of the route of 
the vehicle may not exceed: 

 ∑ ∑ d46x4678 ≤ dl7 (?C6)*  (?C4)* ∀k ∈ %, ∀l ∈ -   (15) 

This equation means that the route of all vehicles 
can be maximized in each period. 

Constraint 8: The system does not contain any in-
ter-depot routes.: 

 x4678 = 0 ∀k ∈ %, ∀i, j ∈  , ∀l ∈ -   (16) 

This equation means that there is no depot-depot 
route. Considering the former constraint, it also 
follows that there is only a depot-customer, customer-
customer, and customer-depot path in the system. 

Constraint 9: The number of visits of each custo-
mer per the whole period can be also taken into ac-
count.  

 ∑ ∑ ∑ x4678B8)*
0
7)*

(?C4)* = v4 ∀j ∈ V   (17) 

 ∑ ∑ ∑ x4678B8)*
0
7)*

(?C6)* = v6 ∀i ∈ V   (18) 

In the equation, v4 means the frequency of visits of 

customer i. The sum of the incoming edges of each 
customer must be equal with the frequency of visits of 
each customer.  

Customer's visit days should be out of the custo-
mer set assigned to customers. 

3.2 The application of the Vehicle Routing Problem 
with Time Window, Period and Multiple Depots 
in transportation systems 

We have chosen the Vehicle Routing Problem with 
Time Window, Period and Multiple Depots because 

many logistics tasks can be modelled with it. In the 
following, the below transportation problems are de-
tailed: 

· Food delivery: delivery of food to shops. It 

consists of the delivery of daily food (for 

example bakery), perishable foods (for 

example dairy products, meats), non-perisha-

ble foods and drinks (conserves, frozen fo-

ods, soft drinks, alcohol drinks). Food deli-

very is delivery from the producer to the 

store. 

· Delivery of raw materials: The raw material is 

delivered from the producer to the factory. 

· Waste collection: waste transportation means 

collecting household garbage and industrial 

waste. 

· Postal services: this includes the delivery of 

letters and newspapers from the post office 

to the homes. 

· In-plant material handling: means transport 

from the warehouse to the production line 

and then transport from the production line 

to the warehouse.  

· Delivery of money: it means that the used 

money is collected from shops and banks and 

then delivered to the banknote manufacturer. 

Or vice versa, the money is transported from 

the banknote manufacturer to the shops and 

banks. 

· Patient transport: means that patients are 

transported to the hospital.  

· Maintenance: maintenance companies per-

form maintenance activities at each node. 

Vehicles have a capacity limit for the products to 
be transported. During many transportation tasks, ve-
hicles can leave from multiple depots and then return 
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there after visited the customers (for example in the 
case of transportation of food or durable product). 
But even in the case of in-plant material handling, we 
can choose which warehouses to depart from during 
the transport between the production units and the 
warehouses. The period is a very important factor for 
transportation tasks. In many cases, it may be ne-
cessary to serve the customer’s demand for goods pe-
riodically. In almost all transportation activities, for 
example, food transportation, maintenance activity, 
trash transportation, certain postal deliveries (newspa-
per, flyer), and money transportation. Periodicity is 
also important during in-plant transportation because 
there must be a continuous flow of material between 
production and the warehouse. In some cases, there is 
no periodicity, such as emergency patient transport or 
travel agency ad hoc trips. The time window is an im-
portant factor in out-plant material handling. The time 
window means that customer demands can only be 
served within a certain time interval. This constraint 
can be occurred in case of food and durable products 
transportation, in case of maintenance tasks, postal 
deliveries, trash transportation, and money transpor-
tation. During in-plant delivery, the time window can 
also be important, if the raw material is brought to the 
production line, the raw material must arrive at the 
production line within a certain time interval. It is also 
important when transporting the product from the 
production line that the finished product is delivered 
within a certain time interval. With these in mind, the 
Vehicle Routing Problem with Time Window, Period 
and Multiple Depots is a general task that is often 
required during different types of transportation sys-
tems. 

 Construction Algorithms 

In this section, we describe the implemented con-
struction algorithms. The construction algorithms 
construct one solution. They give locally the best 
steps, but with the exclusive usage of these algorithms 
usually, we can not get the global optimum. The 
running time of these algorithms is low. During these 
algorithms we construct a tour (TSP is solved), only 
the evaluation of the permutation is different from the 
TSP problem (this is called route-first cluster second 
technique [25]). 
 

Nearest Neighbour algorithm 
In the algorithm, we always visit the closest city to 

the last selected city. So, the algorithm takes the best 
steps locally, but it can easily skip points that can only 
be crawled at a high cost. [26] 
 

Insertion Heuristics 
The Nearest Insertion, Cheapest Insertion, 

Farthest Insertion and Arbitrary Insertion algorithm 

belongs to the Insertion Heuristics group. The 
Nearest Insertion algorithm always chooses the city 
that is closest to the tour. The Cheapest Insertion al-
gorithm always selects the city where the insertion cost 
is minimal. The Arbitrary Insertion algorithm selects 
the city arbitrary. The Farthest Insertion always 
chooses the city that is farthest to the tour. [27] 
 

Greedy 
The algorithm continuously builds the path from 

the individual edges, always selecting the shortest edge 
that has not yet been selected, which does not develop 

an �-peak tour (where � is the number of cities) and 
where the peak level is not bigger than two. [28] 

 Ant Colony Algorithms 

Ant Colony Optimization is one of the best known 
metaheuristics after Genetic Algorithm [29], Simula-
ted Annealing [30] and Particle Swarm Optimization 
[30].  

Ant Colony Optimization is based on ants' behavi-
our. Ants release a hormone (pheromone) that is used 
to mark the path to food. This is also perceived by 
other ants. The more ants traversing the route, the 
higher the hormone content of the road, and the lesser 
use of pheromone on less-used roads. Thus, ants will 
choose roads with higher pheromone content. For 
shorter routes, ants can place several “markers” per 
unit section, so the ants will probably choose the shor-
ter path. [31] 

ACO is a generic term and includes many specific 
algorithms. Examples of such algorithms include the 
Ant System (AS), Ant Colony System (ACS), MAX-
MIN Ant System (MMAS), and Rank Based Version 
of Ant System (RBVAS). 

Ant Optimization was initially applied on graphs. 
In the algorithm, ants construct paths from node to 
node. Finding solutions for ants is assisted by phero-
mone paths and heuristic information. You can asso-

ciate on the  !"(#) pheromone quantity with the edge 

of the graph ($, %), which may change continuously du-

ring the algorithm. # denotes the iteration variable. [31] 
At first, ants randomly select their nodes. The cho-

ice of the next node of the ant depends on the amount 

of pheromone in the edge between $  and %  and the 
length of the edge. The ants will then always choose 
the node that is close to them, and the connecting edge 
has high pheromone content. Because of the regularity 
of a solution, ants have to know which node they have 
touched to construct a path. After every ant has con-
struct its way, the pheromones are updated. The algo-
rithm does this by reducing the pheromone content of 
the edges with a constant value, and then placing the 
ants on the pheromone at each edge they went 
through. When edges are refreshed, edges on which 
many ants travelled and/or form a shorter path will 
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receive a greater amount of pheromone. [31] 

5.1 Ant System 

Constructing the tour [31] 
Ants select their first node at random and apply a 

probability-based decision rule in each path prepara-

tion step. The probability of ant �. that is in the city  !. 
and goes to city ". in iteration #.: 

 p$%& = ['()(+)]-∗[0()]1
∑ ['(3(+)]-∗[0(3]13∈5(6

   if j ∈ N$&   (19) 

In the formula, 789 = 1 i.e. the reciprocal of the 

distance between the two nodes, and ;89(#) the phe-

romone content of (!, ") in iteration #. > and ? deter-
mine the effect of the amount of pheromone and 

distance between nodes. @8A  denotes the nodes that 
the ant has not yet been affected. 

Updating Pheromones [31] 
When the ants constructed their way, we update 

the pheromones. In the first step, the amount of phe-
romone must be reduced by a constant value, and the 
ants will "mark" the edges they visit. Pheromone up-
date formula: 

 τ$%(t + 1) = (1 − ρ) ∗ τ$%(t) + ∑ ∆τ$%&(t)H&IJ  

 (20) 

in the formula 0 < M ≤ 1 is the rate of evapora-

tion of the pheromone, and ;89 is the pheromone con-

tent of the (! , ") edge in the #. iteration. 

 ∆τ$%&(t) = P J
Q6(+)  if ant k.  goes through the  (i, j) edge

0     else   (21) 

In the formula, RA(#) is the length of the path of 

the �. ant, and ;89A (#) the pheromone content of (!, ") 

edge in the #. iteration. 

5.2 Ant Colony System 

The Ant Colony System algorithm was developed 
to develop the Ant System algorithm. ACS differs 
from AS in three ways: [31] 

1. ACS uses a much more powerful operational se-
lection rule. 

2. The algorithm adds pheromone only to the ed-
ges that belong to the best global solutions. 

3. Whenever the ants use the (!, ") edge, so when 

goes from city !.  to ".  lose a pheromone from the 
edge. 

Construction the path: 
Creating the path is the same as the Ant System 

algorithm's path constructing strategy. 
Updating Global Pheromone [31] 
In the ACS algorithm, only the globally best ant 

can take pheromone after every iteration. Pheromone 
update formula:  

τ$%(t + 1) = (1 − ρ) ∗ τ$%(t) + ρ ∗ ∆τ$%ST(t)  (22) 

In the formula ∆;89UV(#) = J
WXY. ;89(#) is the phe-

romone content of the (!, ") edge in iteration #. 
Local Pheromone Update [31] 
In addition to the global pheromone update, the 

Ant Colony System algorithm also performs a local 

pheromone update. Once they have passed through 
the route, they will do so immediately. The formula of 
the local pheromone update: 

 τ$% = (1 − ξ) ∗ τ$% + ξ ∗ τ$%\  (23) 

In the formula 0 < ^ < 1. ;89\ is the initial phero-

mone content. During the local update, the edges that 
have already been selected are not as attractive to the 
following ants. 

5.3 MAX-MIN Ant System 

The MMAS is a further development of the Ant 
System algorithm. In the MMAS, the paths are similar 
to those of AS. The differences are: [31] 

1. Only one ant can put pheromone after each ite-
ration. 

2. Limiting the strength of pheromone paths to an 
[ ;_8`, ;_bc ] interval where ∀;89  (;_8` ≤ ;89 ≤
;_bc) avoids stagnation. 

3. The initial value of the pheromone paths will be 
the highest value of the interval. This at the beginning 
of the algorithm provides faster detection of the 
search space. 

5.4 Elitist Strategy of Ant System 

Elitist Strategy of Ant System has been developed 
to improve the Ant System algorithm. The idea is to 
place the emphasis on the best route so far when up-
dating the pheromone. The pheromone update is 
done using the following formula: [32] 

 τ$%(t + 1) = (1 − ρ) ∗ τ$%(t) + ∑ ∆τ$%&(t)H&IJ + w ∗ ∆τ$%ST(t)  (24) 

In the formula ∆;89UV(#) = J
WXY, ;89(#) is the phe-

romone content of the (!, ") edge in iteration #., q > 0 weight controls how globally the best solution in-
fluences the pheromone update on edges that are the 
best. 

5.5 Rank Based Version of Ant System 

The Rank Based Version of Ant System algorithm 
is another modification of the Ant System algorithm. 
This algorithm is based on the Elitist Strategy of Ant 
System because it updates pheromones based on the 
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globally best route. Also, a certain number of ants that 
have travelled the shortest route in a given iteration 
can put a pheromone. In the algorithm, ants are ran-

ked by their path, i.e. (RJ(#)  ≤ Rx(#)  ≤  ⋯  ≤R_(#)). The pheromone level depends on the rank of 

the ant (which is denoted by q). Only the best (q −

1) ant can put pheromone in the given iteration. The 
globally (the previous) best ant can put pheromone 
with the highest weight. The best ants of the iterations 

can always put pheromone with weight z{| {0, q −~}. The update formula for this modified pheromone 
is: [31]

 τ$%(t + 1) = (1 − ρ) ∗ τ$%(t) + ∑ (w − r) ∗ ∆τ$%� (t) + w ∗ ∆τ$%ST(t)��J�IJ   (25)

In the formula ∆;89� (#) = J
W�(�)  and ∆;89UV(#) =

J
WXY, ;89(#) if the pheromone content of the (!, ") edge 

in iteration #. 

 Implementation and evaluation 

In this section, we present our representation tech-
nique and evaluation for the Vehicle Routing Problem 
with Time Window, Period and Multiple Depots. 

During the problem, we introduced a two-part re-
presentation technique. This two-part technique can 
be seen in Figure 2. 

Suppose we have 9 customers. In addition, a four-
day period was defined. The first part of the figure 
(permutation part) represents the order of the custo-
mers, i. e. 1, 2, 6, 4, 8, 3, 9, 5, 7. Period part (day 1) 
indicates customers to visit on the first day, period 
part (day 2) indicates customers to visit on the second 
day, and so on. Based on these, in the first day the 
customers should be visited with the following order: 
3, 2, 4, 1, 5, 9, while in the second day should be visited 
in the following order: 5, 7, 4, 3, 8, 1. 

 

Fig. 2 Representation of the problem 
 
Permutation and period parts are evaluated by ta-

king the order of the customers in the permutation 
section and seeing the day of the period part. Accor-
ding to this, we list the customers for a given day. Re-
sults after the evaluation are presented in Figure 3. In 
the first day the following customers must be visited, 
in that order: 1, 2, 4, 3, 9, 7. In the second day the 

following customers must be visited: 1, 8, 4, 3, 7, 5, in 
the third day the 1, 8, 4, 3, 5, in the fourth day 1, 2, 6, 
4, 3, 9, 5. 

 

Fig. 3 Results of the evaluation 
 

The next step in the evaluation is to take each day 
one after the other - for the cities that always belong 
to that day - and do the following: 

1. Starting from the first element of the permuta-
tion section, we continually collect the elements 
(cities) until the capacity limit or the time window 
barrier. 

2. The order of the received cities is assigned to the 
depot closest to the first and last cities. 

 Test results 

The test runs were examined for four data sets. 
The data sets contained 48 customers. We tested the 
effectiveness of all the Ant Colony Optimization tech-
niques we mentioned. The following abbreviations are 
used: the AS+R means that the Ant System algorithm 
improves only random solutions, the AS+C,R means 
that the Ant System algorithm improves the solutions 
of the construction algorithms and randomly genera-
ted solutions, the ACS+R means that the Ant Colony 
System algorithm improves only randomly generated 
solutions, the ACS+C,R means that the Ant Colony 
System algorithm improves the solution of the con-
struction algorithms and also randomly generated so-
lutions. The ESAS+R means that the Elitist Strategy 
of Ant System algorithm improves only randomly ge-
nerated solutions, the ESAS+C,R means that the Eli-
tist Strategy of Ant System algorithm improves the so-
lution of construction algorithms and also randomly 
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generated solutions. MMAS+R means that the MAX-
MIN Ant System algorithm improves only randomly 
generated solutions. The MMAS+C,R means that the 
MAX-MIN Ant System algorithm improves the solu-
tion of constructed algorithms and randomly genera-
ted solutions. The RBVAS+R means that the Rank-
Based Version of Ant System improves randomly ge-
nerated solutions, the RBVAS+C,R means that the 
Rank Based Version of Ant System algorithm impro-
ves the solutions of construction algorithms and also 
randomly generated solutions. 

 During the test runs, the parameters of the Ant 
System algorithm (AS+R) had the following parame-
ters: number of iterations 20 * number of customers, 

number of ants: 70, = 0.8, = 1, = 2 and 70 
random solutions. AS + C,R differs from AS + R in 
that instead of the initial 70 random solutions, the 
initial 10 Nearest Neighbor solutions, 10 Nearest In-
sertion solutions, 10 Cheapest Insertion solutions, 10 
Arbitrary Insertion solutions, 10 Farthest Insertion so-
lutions, 10 Greedy solutions and it also contains 10 
randomly generated solutions. 

 The Ant Colony System (ACS + R) had the 
following parameters: number of iterations 20 * num-

ber of customers, number of ants: 70, ρ = 0.8, α =

1, β = 2, = 0.8 and 70 random solutions. ACS + 
C,R differs from ACS + R in that instead of the initial 
70 random solutions, the initial 10 Nearest Neighbor 
solutions, 10 Nearest Insertion solutions, 10 Cheapest 
Insertion solutions, 10 Arbitrary Insertion solutions, 
10 Farthest Insertion solutions, 10 Greedy solutions 
and it also contains 10 randomly generated solutions.  

The MAX-MIN Ant System (MMAS + R) had the 
following parameters: number of iterations 20 * num-

ber of customers, number of ants: 70, ρ = 0.8, α =

1 , = 2 , #$%& =
#'()

2∗+,'-/3 56 759(:;5<>
, #$@A =

1

B∗C
D-  and 

70 random solutions. MMAS + C,R differs from 
MMAS + R in that instead of the initial 70 random 
solutions, the initial 10 Nearest Neighbor solutions, 10 
Nearest Insertion solutions, 10 Cheapest Insertion so-
lutions, 10 Arbitrary Insertion solutions, 10 Farthest 
Insertion solutions, 10 Greedy solutions and it also 
contains 10 randomly generated solutions. 

The Elitist Strategy of Ant System algorithm 
(ESAS+R) had the following parameters: number of 
iterations 20 * number of customers, number of ants: 

70, ρ = 0.8 , α = 1 , β = 2,  w = 6  and 70 random 
solutions. ESAS + C,R differs from ESAS + R in that 
instead of the initial 70 random solutions, the initial 10 
Nearest Neighbor solutions, 10 Nearest Insertion so-
lutions, 10 Cheapest Insertion solutions, 10 Arbitrary 

Insertion solutions, 10 Farthest Insertion solutions, 10 
Greedy solutions and it also contains 10 randomly ge-
nerated solutions. 

The Rank Based Version of Ant System algorithm 
(RBVAS+R) had the following parameters: number of 
iterations 20 * number of customers, number of ants: 

70, ρ = 0.8 , α = 1 , β = 2,  w = 6  and 70 random 
solutions. RBVAS + C,R differs from RBVAS + R in 
that instead of the initial 70 random solutions, the 
initial 10 Nearest Neighbor solutions, 10 Nearest In-
sertion solutions, 10 Cheapest Insertion solutions, 10 
Arbitrary Insertion solutions, 10 Farthest Insertion so-
lutions, 10 Greedy solutions and it also contains 10 
randomly generated solutions. 

Tab. 1 Parameter settings of the ACO algorithms 
Number of ite-

rations 
20*Number of locations 

Number of 
Ants 

70 

G 0.8 

� 1 

  2 

! 0.8 

" 6 

#$%& 
'()*

2 ∗ ,-./01 45 64789:4;<
 

#$=> 

?

@∗ABC
 (DEG=length of the glo-

bal best route) 
Initial solution 

Nearest Ne-
ighbour 

0 10 

Nearest Inser-
tion 

0 10 

Cheapest In-
sertion 

0 10 

Arbitrary In-
sertion 

0 10 

Farthest Inser-
tion 

0 10 

Greedy 0 10 
Random 70 10 

 
Table 1. indicates the parameter settings of the 

ACO algorithms. The number of locations was 48 in 
our test case. Figure 4. illustrates the running result of 
the first dataset, Figure 5. shows the results of the se-
cond, Figure 6. the third and Figure 7. the fourth test 
results. In the case of each dataset, we give the best 
the average and the worst results of 10 runnings. 
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Fig. 4 The results of the first dataset 

 
In the case of the first dataset (Figure 4.), the values 

of best result are between 2641 and 3402. This means 
761 difference values. The best techniques were the 
ESAS algorithm (2648 fitness value) and the RBVAS 
algorithm (2641 fitness value). The improvement of 
construction algorithms is better, than improving only 
randomly generated solutions.  

The average result values of the first dataset are 
between 2864 and 3723. The best techniques were the 

ESAS algorithm (2888 fitness value) and the RBVAS 
algorithm (2864 fitness value). The worst technique 
was the MMAS algorithm (3723 fitness value). The di-
fference between the best and worst fitness values is 
859. 

The worst result values of the first dataset are 
between 3026 and 4151 fitness values. The MMAS al-
gorithm has the worst solution, and RBVAS has the 
best fitness value. 

 
Fig. 5 The results of the second dataset 
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In the case of the second dataset (Figure 5.) also 
the ESAS and the RBVAS algorithm has the best per-
formance. The MMAS algorithm has the worst per-
formance. 

In the best result of the second dataset figure can 
be seen, that the best values are between 2620 and 
3412. The difference between the two values is 792. 
The best value belongs to the RBVAS algorithm, and 
the wors value belongs to MMAS algorithm.  

In the average result of the second dataset figure 

can be seen, that the average values are between 2864 
and 3723 fitness values. The difference between these 
two values is 859. The MMAS gave the worst results, 
and the RBVAS gave the best results. 

In the worst result of the second dataset figure can 
be seen, that the worst result values are between 3026 
and 4151 fitness values. The 3026 fitness value 
belongs to RBVAS algorithm, and the 4151 fitness va-
lue belongs to MMAS algorithm. 

 
Fig. 6 The results of the third dataset 

 
Fig. 7 The results of the fourth dataset 
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The third dataset (Figure 6.) shows the same as the 
previous datasets. The MMAS algorithm has the 
worst, and the ESAS and RBVAS has the best perfor-
mance. 

In the best result of the third dataset figure can be 
seen, that the best results are between 2714 and 3551. 
The difference of these two values is 837. The 2714 
fitness value belongs to AS algorithm, and the 3551 
belongs to MMAS algorithm. 

The average result of the third dataset figure pre-
sent, that the average results are between 2922 and 
3805. The 2922 value belongs to RBVAS , and the 
3805 value belongs to MMAS. 

The worst result of the third dataset figure pre-
sents, that the worst results are between 3092 and 
4260. The 3092 value belongs to RBVAS and the 4260 
value belongs to MMAS algorithm. 

The fourth dataset (Figure 7.) shows the same as 
the other, above presented three datasets. The best al-
gorithms were the ESAS and RBVAS algorithm and 
the worst was the MMAS algorithm. 

The best result of the fourt dataset figure presents, 
that the best results values are between 2742 and 3452. 
The 2742 value belongs to ACS algorithm, and the 
3452 value belongs to MMAS algorithm.  

The average result of the fourt dataset figure de-
monstrates that the average results values are between 
3012 and 3807. The 3012 fitness value belongs to 
RBVAS, and the 3807 value belongs to MMAS algo-
rithm. 

Then considering the worst result of the fourth da-
taset figure, it can be established, that the worst results 
are between 3154 and 4308 values. The 3154 value 
belongs to ESAS algorithm, 4308 value belongs to 
MMAS algorithm. 

 Conclusion 

In this article, we presented the Vehicle Routing 
Problem with Period, Time Window and Multiple De-
pots. We presented the mathematical model of the 
problem than we solved with construction and impro-
vement algorithms. The construction algorithms were 
the following: Nearest Neighbour, Nearest Insertion, 
Farthest Insertion, Cheapest Insertion, Arbitrary In-
sertion and Greedy algorithm. The improvement algo-
rithms were the Ant Colony Optimization (ACO) al-
gorithms, which are the followings: Ant System (AS), 
Ant Colony System (ACS), Elitist Strategy of Ant Sys-
tem (ESAS), MAX-MIN Ant System (MMAS), Rank-
Based Version of Ant System (RBVAS). We used the 
ACO algorithms to improve only randomly generated 
solutions and to improve to results of the construction 
algorithms and also randomly generated solutions. 
The results indicated, that the ESAS and the RBVAS 
algorithms were the most effective, and the MMAS 

was the worst. The improvement of construction al-
gorithms had better solutions than improving only 
randomly generated solutions.  
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