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In this article, we studied the phenomenon of instability which is the buckling of the beam elaborated of 
steel (E36-S355), and magnetorheological elastomer subject to compression-flexion solicitation. The 
study of the influence of the intensity of the magnetic field on the buckling instability of compressed 
hybrid beams is done by a mathematical development using the Ritz approach and by a numerical 
simulation under the Abaqus calculation code. The obtained results show clearly that we can control the 
instabilities of the adaptive intelligent beams behavior by the magnetic field.
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Introduction

Microcomposite magnetorheological elastomers 
(MMRE) belong to the family of intelligent composite 
materials, their rheological properties can be 
effectively controlled in near real time in a continuous 
manner and reversible by the application of an 
external magnetic field.

The buckling of structures is a subject which has 
been dealt with in numerous works, and which 
remains to this day a major problem in several sectors. 
Many of the solutions that can be found in literature, 
among these works we find the work carried out by 
Soomin Choi et al. [1], in this work the authors 
proposed a new higher-order beam bending theory 
that not only includes as many bending-related 
sectional modes as desired, but also provides the 
desired explicit stress-generalized force relations. To 
validate this latter theory, they calculated the static, 
free vibration, and buckling responses of several thin-
walled rectangular hollow section beams. Qiduo Jin et 
al. [2] numerically analyzed the non-linear bending and 
the forced vibrations of the FG-GRC sandwich 
beams. The results obtained describe the static and 
dynamic behaviors as well as the optimal type of 
graphene reinforcement of these beams under 
different core-face sheet thickness ratios. Masoud 
Derakhshani et al. [3] made an analytical and 
experimental study of an energy recovery system 
based on bistable and deformable beams and a flexible 

piezoelectric made in PVDF. They found a good 
agreement between the results of the two studies. The 
work of Haning Xiu et al. [4] is devoted to study the 
linearized vibrational properties of pre-buckled beams 
along their stable transition paths. Numerical results 
are calculated using an elastic model and validated by 
a series of experiments. Ngoc Hieu Pham et al. [5] 
studied the global buckling capacity of cold rolled 
beams made of aluminum alloy. They developed a 
finite element model using Abaqus software. The 
results found are validated by a series of twenty tests. 
In order to study the behavior of lateral torsional 
buckling of HSS beams, Xiao-Lei Yan et al. [6] carried 
out an experimental and numerical study. They 
established a nonlinear finite element model taking 
into account the initial geometric imperfection. 
Chenyu Liu et al. [7] proposed a new type of reduced 
beam section connection (BR-RBS). It includes a 
buckling restrained assembled outside the reduced 
section connection (RBS). The results show that the 
proposed connection can satisfy the requirements of 
current seismic codes. Yuanbin Wang et al. [8] studied 
the nonlinear transverse vibrations of a hyperelastic 
beam under harmonic axial loading in subcritical 
buckling regime. They found that the properties of the 
material can modify the vibratory behavior. Samir 
Emam et al. [9] have developed a general formulation 
of the nonlinear buckling of deformable extensible 
beams subjected to shear. They found exact results 
which show that buckling load can be improved by 
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designing materials from artificial metamaterials with 
a negative effective Poisson's ratio. Jen-San Chen et al. 
[10] studied the contact between two plane buckling 
beams pushed towards each other transversely. They 
adopted the vibration method to determine the 
stability of deformations. From this study, it is 
concluded that the equilibrium is stable when one of 
the squares of the eigenfrequencies is negative. Jiří 
Matlák et al. [11] have used of the high-energy electron 
beam source enables repeated surface quenching of 
chosen areas of an engineering part surface ; have 
shown that hardness values continuously decrease 
from the surface to the core of the material. Zongxing 
Zhang et al. [12] investigated the bending buckling 
behavior of hot-rolled H-section beams made of 
Q345B steel corroded under four-point bending with 
various degrees of corrosion. The results show that 
the degree of corrosion influences the yield load, 
buckling load and ultimate load. R.M. Abo-bakr et al. 
[13] studied the buckling of a functionally graded (FG) 
beam under variable axial load by optimizing its power 
to obtain maximum load and minimum weight. The 
proposed model is efficient in the analysis, design and 
optimization of this beam. In order to analyze the free 
vibrations and buckling of bidirectional functionally 
graded sandwich beams, Cong Ich Le et al. [14] 
formulated a 3rd order shear strain beam member. 
They evaluated the natural frequencies and the 
buckling load using the formulated beam member. To 
solve the buckling problem of sandwich beams made 
of FG materials, Jun Liu et al. [15] proposed a new 
semi-analytical approach based on finite elements with 
stepped limits. The approach is validated by the 
existing solutions available in the literature, which 
confirms the accuracy and the adaptation of this 
method for these structures. In an effort to improve 
the critical buckling capacity of steel beams, Farid 
Abed et al. [16] made an experimental study and 
another numerical one using the finite elements and 
by the application of a pre-torsion. The initial pre-
assembly shows a significant improvement in the 
buckling capacity of beams under fixed-end 
conditions rather than under pinned-end conditions. 
On the other hand, the length of the elements has no 
effect. Hadi Arvin et al. [17] presented in their work a 
comprehensive review to study the treatment of free 
vibrations of functionally graded (FG) rotating beams 
before and after buckling. The results show that the 
natural frequency of the pre-buckling decreases by 
increasing the volume fraction of the metallic phase 
and the speed of rotation of the SC beams. 
Mohammad Arefi et al. [18] numerically analyzed by 
Ritz method, the buckling and the free vibrations of 
the sandwich beams of a flexible core reinforced by 
nano-plates in functionally graded graphene. They 
determined the maximum and minimum natural 
frequencies as well as the critical buckling loads of the 

sandwich beam for the FG-X and FG-O distributions, 
respectively. Yoshihiro Kimura et al. [19] studied the 
elastic buckling resistance of I-cantilever beam. To 
perform this study, they proposed a new 
approximation method for plates with flexible 
boundary conditions. Linh T. M. phi et al. [20] studied 
the buckling and lateral buckling of a thin-walled 
mono-symmetric FG I-beam under uniformly 
distributed load and pure bending with different types 
of material distributions. They developed the 
dominant buckling equation and a finite element 
method. The results are validated by comparison with 
those in the literature. Haning Xiu et al. [21] studied 
the stabilization of higher order equilibria of pre-
buckled beams using piezoelectric actuation. Using a 
numerical modeling approach validated by 
experiments, they showed that third and fourth order 
stabilization is physically achievable on certain regions 
of the space parameters. In this work, Dita Jiroutova 
e [22] made a comparison between an experimental 
study of the deflection composite sandwich beam with 
theoretical models.. Wenzhong Yan et al. [23] 
presented analytical modeling to determine the 
influence of design parameters on the latching 
characteristics of bistable buckling beams subjected to 
a transverse point force. This model is checked against 
the results of a finite element model. Farzad Ebrahimi 
et al. [24] analyzed the buckling of a nanocomposite 
shell reinforced with graphene oxide powder (GOPR). 
They also presented results for the critical buckling 
load of these shells. They found that the Winkler and 
Pasernak coefficients have sufficient potential to 
increase critical buckling loads. A. Aguero et al. [25] 
presented a method which allows to calculate the 
amplitude of the initial imperfection for the lateral 
torsional buckling of beams with doubly symmetrical 
section. 

According to the work done before, the buckling 
of MRE beams has not been treated, for that we are 
motivated by the analysis of the buckling of hybrid 
beams in magnetorheological elastomer which has 
been treated in this article. The beam is elaborated of 
three layers, an MRE core with varying properties 
under the application of the magnetic field and two 
steel skins. Two numerical methods were used to 
evaluate the behavior in buckling of the beam and to 
validate the results obtained, namely the Ritz method 
and finite element method under the Abaqus 
calculation code. The results obtained show the 
effectiveness of using this type of structures to remedy 
the effect of buckling.

Mathematical modeling

2.1 Geometric modeling

In our case, the geometric parameters of the beam 
are described in Figure 1. To simplify the modeling, 
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the sandwich beam will be subjected to a buckling solicitation (flexion-compression). 

 

Fig. 1 Illustration and geometry modeling of the proposed sandwich beam.

2.2 Displacement, stress and strain 

Consider the uniformly loaded beam for which the 

plane��coincides with the mean plane and therefore 
the ordinate z is equal to zero. The components of 

displacement at a point, along the directions �, � and 

Z, are denoted   and!, respectively. When a lateral 
load causes deformation of the beam, the median 

surface at a point (�(" #⁄ ) ,�(" #⁄ )), moves by! , the 
displacement field of the sandwich structure is 
identified as follows: 

  %(�, �, &, ') =  *
% (�, �, ') − &%!,-

% (�, �, ') 

 !%(�, �, &, ') = !*
%(�, �, ')  (1) 

where . = 1,3  references the top and bottom 

layers, respectively, and &% is the transverse coordinate 
in the local coordinate system of each layer. 

 *
% (�, �, ') and !*

%(�, �, ') are the displacements of 

the median planes while  %(�, �, &, ')  and 

!%(�, �, &, ') denote the displacements of an arbitrary 

point along the axes � and &  respectively. The 

displacements between the layers are assumed to be 
perfectly delimited (no sliding) and a continuous 
displacement profile through the thickness of the 
sandwich beam, the displacement profile of the central 
layer can be obtained. In other words, it is assumed 
that the in-plane displacements in the central layer 
vary linearly with thickness, while the transverse 
displacement is uniform. 

A continuous displacement profile through the 
thickness is considered assuming the absence of slip 
between the beam layers, which gives the following 
compatibility relationships: 

  
/024

ℎ��
 = !"�#ℎ��$  and %"�#&'��

 = %"�#'��
$  

 !"�#&ℎ��$ = !"(#ℎ(�)  and %"�#&'��
$ = %"(#'(�

)    (2) 

by introducing equation (2) into equation (1), the 
displacement fields in the middle layer can be obtained 
using the displacement fields in the elastic layers as 
follows: 

 !$(+, -, ., /) = 12�312($ +  5 6ℎ %,7 − ℎ)%,7)9 + .$ :12�&12(
ℎ� + ℎ�$ℎ�%,7 + ℎ($ℎ�%,7); 

 %$(+, -, ., /) = <�3<($ + .$ <�&<(
ℎ�   (3) 

using the Von-Karman formulation, the nonlinear 
strain-displacement relationships, the normal and in-
plane shear strain components of the face layers can 
be expressed as follows: 

 >?@B = C ?7@?D@E7D@ F,  G = 1,3   (4) 

where ?7@ and ?D@ are the normal strain components 

along the axes +and-, respectively, and E7D@ is the shear 

strain in the ith layer. 
Figure 2 shows the MRE sandwich beam before 

and after strain from which the shear strain 

components of the middle layer in the planes + −.and - − .can be introduced as follows: 

 

 E7"$ = !,"$ +%,7$ = 12�&12(J� + :J�3J�3$"�$J� ;%,7 + :J(3J�&$"�$J� ;%,7)   (5) 

 ED"$ = K,"$ +%,D$ = L2�&L2(J� + :J�3J�3$"�$J� ;%,D + :J(3J�&$"�$J� ;%,D)  (6) 
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Fig. 2 Sandwich beam in MRE not deformed and deformed in the planes, a) x-z and b) y-z. 

Assuming a weak strain condition (small strain), 
Hooke's law can be used to obtain the normal stress 

and shear components in the sandwich beam structure 
as follows: 

C M7@MD@N7D@ F = OP6 &QP�9 R1 S@ 0S@ 1 00 0 (1 − S@) 2⁄ WC ?7@?D@E7D@ F G = 1,3 (7)

N7"$ = X∗E7"$ (8) ND"$ = X∗ED"$ (9) 

where M and Nare the components of the normal

and shear stress, Zand S are the Young's modulus and

the Poisson's ratio of the face layers. X∗ = X[ + GX"is
the complex shear modulus of the MRE layer, where, X[ is the storage modulus and, X" the dissipation
modulus depending on the applied magnetic field, the 
amplitude of the shear strain undergone by the MRE 
core and the excitation frequency. 

2.3 Solving the buckling problem by the Ritz method 

The exact solutions of the buckling problem are 
obtained only for beams in conventional materials, 
and with simple boundary conditions. In practice, 
however, many cases are encountered in which exact 

solutions are not available and approximate methods 
must be utilized. In this work, we consider an 
intelligent beam elaborated of magnetorheological 

elastomer subjected to a transverse load ](+, -) and a

compressive force 7̂  (see Figure 1), we are looking
for approximate solutions in using the Ritz method. 
This approach is equally applicable to buckling 
problem. Each of these problem is governed by an 
energy condition which can be written in the following 
form: _`_a = b/c/Gdecf- Kcg!h (10) 

Energy formulation 

The strain energy of the top and bottom layers of 
the MRE composite sandwich beam can be expressed 
as follows: i = ∫ ∫ kl   :m�<�m7� ;$ + 2l  $ :m�<�m7� m�<�mD� ; + l $$ :m�<�mD� ;$ + 4l oo :m�<�m7mD;$ + 7̂ :m�<�m7� ;$p q+q-rsts (11) 

i) = ∫ ∫ kl)  :m�<(m7� ;$ + 2l) $ :m�<(m7� m�<(mD� ; + l)$$ :m�<(mD� ;$ + 4l)oo :m�<(m7mD;$ + 7̂ :m�<�m7� ;$p q+q-rsts (12) 

The strain energy of the elastomeric core is given as follows: i$ = $uJ� ∫ ∫ [X$′ (1 + Gw)rsts :m<m7;$ + 7̂ :m�<�m7� ;$]q+q- (13) q =  $ (ℎ + 2ℎ$ + ℎ))
For isotropic materials, the bending rigidity is 

given as follows:  l  = l$$ = l,    l $ = Sl, loo = : &Q$ ;l
where%is the transverse displacement of the beam,G$and ℎ$ are respectively the shear modulus and the

thickness of the elastomer respectively. 

The total strain energy of the sandwich beam (i)
can be expressed as follows 

i = i ,) + i$  (14)
The boundary conditions are formulated as follows %|7#s = 0;  

m<m7 {7#s = 0 (15) m�<m7� {7#t = 0;  
m(<m7( {7#t = 0 (16) 

The functions }~(+)  and ��(-)  represent
approximate forms satisfying the boundary conditions 
(15) and (16), these functions are given as follows }~(+) = �d� ��7t − �d�ℎ ��7t − E~ :�Ge ��7t − �Geℎ ��7t ; (17) 
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 ��(-) = �d� ��Dr − �d�ℎ ��Dr − E� :�Ge ��Dr − �Geℎ ��Dr ;  (18) 

The approximate solution is sought in the form of 
a double series with separate variables 

 % = ∑ ∑ �~�}~(+)��(-)��# �~#   (19) 

The functions }~(+) and ��(+)  must constitute 
functional bases.  

In the static case, equation (10) becomes:

 
m`ma�� = ](+, -)         for     �� = 1,2, . . . . . . �e = 1,2, . . . . . . . ^  (20) 

where i is the strain energy. To find the approximate expressions, we derive each term from equations (11) - 
(13) as follows: 

 
m�<m7� = ∑ ∑ �~� u���u7� ����# �~#   (21) 

From where 

 :m�<m7�;$ = ∑ ∑ ∑ ∑ �~��@� u���u7���# �@# u��Pu7� ����# �~# ��  (22) 

The derivation of (22) with respect to �~� gives: 

 
 $ mma�� :m�<m7�;$ = ∑ ∑ �@� u���u7� u��Pu7� ����# �@# ��  (23) 

The integration of this term is written as: 

 
 $ mma�� ∫ ∫ :m�<m7�;$rsts = ∑ ∑ �@� ∫ u���u7� u��Pu7�ts q+ ∫ ���@rs q-��# �@#   (24) 

By combining the equations (11) - (13), and transverse load, we obtain the following algebraic equations.  

 ∑ ∑ �l ∫ u��Pu�� u���u�� q+ ∫ ����q-rsts��# �@# + Sl �∫ }~ u��Pu�� q+ts ∫ �� u���u�rs q� + ∫ }G u���u�� q+ts ∫ �� u���u��rs q�� 
 +l∫ }@}~q+ts ∫ u���u�� u���u��rs q- + 4(1 − S)l ∫ u�Pu� u��u� q+ts ∫ u��u� u��u�rs q- + l ∫ u��Pu�� u���u�� q+ ∫ ����q-rsts  

+Sl �� }~ q$}@q}$ q+t
s � �� q$��q�$r

s q- + � }@ q$}~q}$ q+t
s � �� q$��q�$r

s q-� + l� }@}~q+t
s � q$��q�$ q$��q�$r

s q- 

+4(1 − S)l ∫ u�Pu� u��u� q+ts ∫ u��u� u��u�rs q- + $u
ℎ� X�(1 + Gw) ∫ u�Pu� u��u� q+ts ∫ u��u� u��u�rs q-

 +3 7̂ ∫ u�Pu� u��u� q+ts ∫ ����q-rs ��@� = ] ∫ }~q+ts ∫ ��rs q-   (25) 

To express these integrals, it is convenient to introduce the reduced variables by setting:  

 � = 7t        (for   + = 0 ⇒ � = 0   and for+ = g ⇒ � = 1)   (26) 

 � = Dr      (for   - = 0 ⇒ � = 0   and for- = c ⇒ � = 1)  (27) 

The expression (24) is written: 

 
 $ mma�� ∫ ∫ :m�<m7�;$rsts = ∑ ∑ �@� rt( ∫ u���u�� u��Pu�� s q� ∫ ���@ s q���# �@#   (28) 

By replacing equations (28) in (25), we obtain the following algebraic equations. ∑ ∑ �r�t( ∫ u��Pu � u���u � q¡ ∫ ����q� s s��# �@# + Sl �rt ∫ }~ u��Pu � q¡ s ∫ �� u���u¢� s q� + tr∫ }G u���u � q¡ s ∫ �� u���u¢� s q��+ t�r( ∫ }@}~q¡ s ∫ u���u¢� u���u¢� s q� + 5( &Q)$tr l ∫ u�Pu  u��u  q¡ s ∫ u��u¢ u��u¢ s q� +r�t( ∫ u��Pu � u���u � q¡ ∫ ����q� s s + S �tr �∫ }~ u��Pu � q¡ s ∫ �� u���u¢� s q� + ∫ }G u���u � q¡ s ∫ �� u���u¢� s q�� +t�r( ∫ }@}~q¡ s ∫ u���u¢� u���u¢� s q� + 5( &Q)$rt l∫ u�Pu  u��u  q¡ s ∫ u��u¢ u��u¢ s q� + $u
ℎ�trX�(1 + Gw) ∫ u�Pu  u��u  q¡ s ∫ u��u¢ u��u¢ s q�

 + )rt 7̂ ∫ u�Pu  u��u  q¡ s ∫ ����q� s ��@� = ]cg ∫ }~q¡ s ∫ �� s q�   (29) 

with the dimensionless integrals (29) are expressed by the following reduced form: 

 £~@¤¥ = ∫ u¦��u�¦ s u§�Pu�§ q�      �, G = 1,2, . . . , �       ¨] = 00,02,11,20,22.   (30) 

 ©��ª« = ∫ u¬��u¢¬ s u­��u¢­ q�        e, ® = 1,2, . . . , ^        f� = 00,02,11,20,22.  (31)

these integrals £~@¤¥ and £��ª« are calculated directly 

using the Maple software. 

After substitution, equations (30) and (31) reduces 
as follows: 
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¯¯°l  £~@$$©��ss + [l $6£~@$s©��s$ + £~@s$©��$s9 + 4loo£~@  ©��  ] + l$$£~@ss©��$$ + c$ℎ$)24X$∗
�
�

�
@ £~@  ©��ss + c$ℎ$)24X$∗ £~@ss©��  +

±²6³´µ¶¶·¸¹¶¶ + ³´µ¶¶·¸¹¶¶9+ º±» ¼½³µ¾́¾·¹¶̧¶�¿µ¹ == À¶±²³¶́ ·¶̧  (32) 

The system of equations (32) is written in the 
following compact form: 

∑ ∑ Á@~�����@ �@� = 0 (33) 

Á@~�� = l  £~@$$©��ss + [l $6£~@$s©��s$ + £~@s$©��$s9 + 4loo£~@  ©��  ] + l$$£~@ss©��$$ + c$ℎ$)24X$∗ £~@  ©��ss +
with : r�J�($5Â�∗ £~@ss©��  + c56£~@ss©��ss + £~@ss©��ss9 + )rt 7̂£@~  ©��ss (34) 

where, Á@~�� is the total rigidity matrix.

To obtain the displacements, we solve the 
following equation (35): [Á@~��]>i@�B = 0   (35)

The results obtained using equation (35) developed 
by the Ritz approach are compared with those 
obtained by the finite element method using the 
Abaqus software. The flowchart of the computation 
of displacements by the two methods, Ritz and FEM 
is given by Figure 3. 

In this section we will illustrate the results found 
by exploiting the mathematical model developed by 
the Ritz ap-proach (Section 2).  

The average Young's modulus as a function of the 
magnetic field intensity of magnetorheological 
elastomer test samples charged with 30% of iron 
particles was determined experimentally using a 
viscoanalyzer (DMA 450+) from the laboratory of 
condensed matter physics in Nice, France, marketed 
by Metravib. The analysis results are given in Table 1. 
The conservative G ', dissipative G' 'and loss factor η 
moduli are given by Nedjar et al [26,27]. 

Fig. 3 Flowchart of displacement calculation.Ritz modeling 
results and discussions 

Tab. 1 Mechanical and geometric properties of the MRE core 
Mechanical properties 

Young’s modulus (MPa) Poisson coefficient (ν) Mass density � (kg/m3)
18.60 0.48 1100 

Geometric properties 
h2 (mm) L (mm) 

2 1500 

Tab. 2 Mechanical and geometric properties of the steel (E36 - S355) 
Mechanical properties 

r  !" #$⁄ & E (')*) ,
7800 210000 0.3 

Geometric properties 
L (mm) a (mm) h1,3 (mm) 

1500 50 1 

The mechanical and geometric characteristics of 
the part of the beam fabricated of steel are 
summarized in Table 2. 

Figure 4 shows the results of comparison of the 

deformation calculated for an axial force in 
compression and in flexion. This figure shows the 
maximum deflection obtained when an axial force is 
applied to the end of a beam embedded at x = 0, and 
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stressed by a load Nx at x = L. We can observe the 
instability which turns out as soon as the axial force in 
compression reaches 70% of its critical value, whereas 
on the contrary the deflection is stable for the case of 
axial tensile. To this end, in what follows we will deal 
with the case of compressive solicitation.

Fig. 4 Variation of vertical deflection as a function of length 
without magnetic field intensity.

The results of the deformation in the case of the 
zero magnetic field intensity are compared with those 
which have been found for a magnetic field intensity 
of 0, 0.25, 0.5 and 1T. Figure 5 clearly shows the effect 
of the magnetic field on the buckling behavior of 
smart beams made in magnetorheological elastomer. 
It can be seen from Figure 5 that the beam is highly 
unstable for zero magnetic field intensity; on the other 
hand, this instability decreases with the increase in the 
magnetic field intensity. Note that the deflection is 
practically stable for magnetic field intensity equal to 
1T. In conclusion, from this work, we show that the 
application of a magnetic field produces an apparent 
stiffening of the elastomer; this stiffening is 
responsible of the creation of the iron particles 
columns in the form of pseudo-fibers.

Fig. 5 Variation of the vertical deflection in compression as a 
function of the length with different magnetic field intensities.

This figure clearly highlights the influence of the 
magnetic field on the behavior of the beam. The 
bending stiffness is improved by the fact that the
different intensities increase the tensile modulus. This 
allowed us to conclude that the increase in the 
magnetic field favorites the increase in the bending 
stiffness of the magnetorheological elastomer 
structure. The total charge without the effect of the 
magnetic field reaches a value of approximately 500N 
which gives bending amplitude of 44.55 mm, this 
charge reaches a value of approximately 250N which 
gives bending amplitude of 13.92 mm for a magnetic 
field intensity of 1T, i.e. a reduction in the value of the 
bending amplitude of 150%.

Figure 6 presents the Ritz approach results in term 
of evolution of the buckling force Nx submitted by 
the magnetorheological elastomer beam according to 
the vertical deformation. There are five curves 
depending on the variation of the intensity of the 
magnetic field (0T, 0.25 T, 0.5T, 0.75T and 1T). The 
vertical deformation decreases with the increase in the 
intensity of the magnetic field, i.e. it decreases with the 
increase in the magnetic force, the latter is considered 
a resistance force due to the increase rigidity of MRE 
under the effect of the magnetic field.

Fig. 6 Influence of the magnetic field on the deflection as a 
function of the buckling force submitted by the MRE beam.

We see a decrease a reduction of 50% of the 
vertical deformation for intensity of the magnetic field 
of 0.25T, and a reduction of 90% for a magnetic field 
intensity of 1T compared to the vertical deformation 
without magnetic field.

Numerical simulation

After the study of the behavior in buckling by the 
Ritz approach method, we established a numerical 
simulation under Abaqus software for the study of the 
elastomer beams steel-magnetorheological 
compressed inflected. The objective of this study was 
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to verify the results found by the semi-analytical 
method and to determine the influence of application 
of a magnetic field on the buckling behavior of the 
beams. To model the rheological behavior of the 
magnetorheological elastomer under Abaqus, we used 
the 8-branch Maxwell rheological model. Figure 7 
shows the geometry, the boundary conditions, the 
loading and the mesh of the beam. To verify whether 
the discretization size is adequate for the buckling 
analysis, simulations were made under the same 
conditions. One will compare the displacements in 
buckling in the beam for various meshes, going from 
0.1mm to 1mm.

Fig. 7 Geometry, boundary conditions, loading and mesh of 
the beam.

The results of the simulations show that the 
displacements of the beam after buckling are 

practically the same for all the meshes of the size less 
than or equal to 0.4mm, (Figure 8), then the results are 
almost identical in terms of displacement.

It is thus judicious to choose a mesh whose length 
is lower or equal to 0.4mm to carry out good results 
of buckling. This discretization seems to be a good 
compromise because choosing a mesh too fine would 
lead to longer computation times without much 
influence on the results. To this end, we have 
discretized the beam with a brick element with 8 nodes 
of size 0.2x0.2x0.2 mm. The results of this 
discretization are represented in Figure 7.

Fig. 8 Convergence and choice of the size of the beam mesh 
element.

The results of the numerical simulation by the 
finite element method under the Abaqus software 
with different magnetic field intensities are presented 
in Figure 9.

Fig. 9 Variation of the vertical deflection as a function of different magnetic field intensities.

Comparison of results and discussion

In this section, we compare the results obtained by 
Ritz approach method using Matlab code with those 
found by numerical simulation using Abaqus software.

In Figure 10, the instability of the 

magnetorheological elastomer beam in buckling has 
been illustrated and compared in the case of 
compression and traction stresses found by Ritz 
approach and numerical methods, it is observed that 
the two curves are very close to each other for the two 
stresses, and the beam has an approximately stable 
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behavior in the case of tensile stress, and an unstable 
behavior in the case of compressive stress.

Fig. 10 Buckling deflection according to the length of the beam 
without magnetic field.

The same comparisons are made with the 
simulation of the behavior in compression of the 
beam (Figure 11); this figure shows a clear 
improvement on the instability of the behavior, the 
latter is adjusted by the application of a magnetic field. 
Indeed, the two curves are almost superimposed, 
which expresses a good modeling of the beam 
behavior, either by the Ritz approach or by numerical 
simulation. The most rigid structures in shear are the 
most exposed to the magnetic field. This allows us to 
conclude that the increase in the stiffness modulus of 
the elastomer material charged with iron particles 
produces an increase in the damping ratio. The 
improvement of the mechanical response by the 
application of a magnetic field on our structures is very 
significant compared to the response of other 
conventional structures. The figure also shows the 
advantage of the elaborated intelligent composite 
structures and that the buckling deflection is 
controlled by adjusting the rheological properties of 
the elastomer charged by the iron particles.

Fig. 11 Vertical deflection according to the length of the beam with applied magnetic field.

Table 3 represents the comparison of the vertical 
deflections obtained by the Ritz approach and 
numerical methods. These results are confronted with 
a lower average error of 5%. It is also observed for the 
two methods that the deflection values decrease with 
the increase of the magnetic field intensity that is to 
say with the increase in the magnetic force Fm.

The results of the deflection as a function of the 

total load submitted by the magnetorheological 
elastomer beam, obtained from FEM simulations 
under the calculation code Abaqus corresponded well 
to the results obtained by the Ritz approach, these 
results are shown in Figure 12 and given in Table 4. It 
can be seen that the difference between the results 
obtained by the two methods does not exceed 9%.
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Tab. 3 Comparison of the vertical deflections obtained by the Ritz approach and numerical methods 
 B = 0T B = 0.25T 

x(cm) 
w  Ritz approach 

(mm) 
w numerical 

(mm) 
∆% 

w  Ritz approach 
(mm) 

w  numerical 
(mm) 

∆% 

10 00.78 00.80 02.50 00.47 00.50 07.50 
20 02.13 02.20 03.29 00.76 00.80 05.26 
30 03.52 03.70 05.11 01.12 01.03 08.74 
40 04.74 04.80 01.26 01.98 01.85 07.03 
50 07.65 07.40 03.38 03.49 03.70 06.02 
60 08.33 08.00 04.12 04.66 04.70 00.08 
70 12.16 11.80 03.05 05.83 05.55 05.04 
80 14.72 14.80 00.54 07.86 07.40 06.22 
90 19.04 18.50 02.90 09.67 09.25 04.54 
100 23.20 22.20 04.50 12.43 12.95 04.18 
110 28.25 29.50 04.40 13.92 14.79 06.25 
120 31.45 33.30 05.88 15.72 16.64 05.84 
130 36.76 37.00 00.65 17.88 18.49 03.41 
140 40.14 40.70 00.65 20.07 20.34 01.34 
150 44.55 44.39 00.34 22.27 22.19 00.36 

 B = 0.5T B = 1T 

x(cm) 
w  Ritz approach 

(mm) 
w numerical 

(mm) 
∆% 

w  Ritz approach 
(mm) 

w  numerical 
(mm) 

∆% 

10 00.13 00.14 07.69 00.28 00.30 07.14 
20 00.43 00.40 07.50 00.56 00.60 07.14 
30 01.28 01.40 09.37 00.75 00.80 06.66 
40 01.86 01.75 06.28 01.21 01.15 05.22 
50 03.79 03.65 03.83 01.25 01.16 07.76 
60 04.64 04.80 03.45 03.30 03.48 05.45 
70 05.36 05.04 06.35 04.49 04.64 03.34 
80 07.27 06.72 06.19 04.71 04.80 01.91 
90 08.70 08.41 03.45 05.69 05.80 01.93 
100 11.44 11.77 02.88 06.90 06.96 00.87 
110 12.96 13.45 03.78 08.13 08.12 00.12 
120 14.95 15.13 01.20 09.33 09.28 00.54 
130 16.49 16.81 01.94 10.46 10.44 00.19 
140 18.36 18.49 00.71 12.74 12.76 00.16 
150 20.15 20.18 00.15 13.88 13.92 00.29 

Tab. 4 Comparison of the buckling force- deflection curves obtained by the Ritz approach and numerical methods 
 B = 0T B = 0.25T 

Nx 
(N) 

w  Ritz approach 
(mm) 

w numerical 
(mm) 

∆% 
w  Ritz approach 

(mm) 
w  numerical 

(mm) 
∆% 

50 0.290 0.294 1.38 0.242 0.264 9.10 
100 0.578 0.602 4.15 0.498 0.542 8.83 
150 2.850 2.770 2.90 2.214 2.224 0.45 
200 7.600 7.542 0.77 4.542 4.563 046 
250 14.250 14.314 6.40 7.310 7.375 0.89 

 B = 0.5T B = 1T 
Nx 
(N) 

w  Ritz approach 
(mm) 

w numerical 
(mm) 

∆% 
w  Ritz approach 

(mm) 
w  numerical 

(mm) 
∆% 

50 0.161 0.154 4.54 0.067 0.066 1.50 
100 0.385 0.389 1.04 0.168 0.159 5.66 
150 1.327 1.372 3.40 0.458 0.463 1.10 
200 3.220 3.290 2.17 1.241 1.231 0.80 
250 5.850 5.790 1.04 2.375 2.376 0.27 
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Fig. 12 Comparison of the buckling force-deflection curves.

Conclusions

This work concerns the Ritz approach and 
numerical study of a sandwich beam with a layer of 
magnetorheological elastomer.

The mechanical properties of the 
magnetorheological elastomer were determined 
experimentally by dynamic analysis and then used to 
simulate the buckling behavior of the beam, and the 
sandwich beam finite element model was derived 
using the Abaqus commercial finite element software 
and the brick element was used to mesh the entire 
system.

The function "fsolve" under Matlab was used to 
solve the approximation function.

The first results, presented in this article, showed 
that the magnetorheological elastomer layer can be 
used as an efficient solution to make structures 
subjected to buckling stress more stable due to the 
significant increase in the damping rate and the rigidity 
simultaneously by the use of a magnetic field.

The results obtained by numerical simulation and 
the Ritz approach model indicated that the structure 
proposed in this study could be used to reinforce the 
resistance of infrastructures to buckling.

In addition, the results found by the finite element 
model using Abaqus software, showed a satisfactory 
correlation with the results obtained by the Ritz 
approach model using Matlab code. Finally, this study 
shows a great interest in the remediation of the 
buckling effect in several fields of application (civil 
and mechanical engineering).
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