
February 2022, Vol. 22, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489

 

indexed on: http://www.scopus.com 111  

DOI: 10.21062/mft.2022.009 © 2022 Manufacturing Technology. All rights reserved.  http://www.journalmt.com

Development of a Surface Roughness Prediction Model for  
Slow Tool Servo Turning Machining 

Wei Zhou (0000-0001-5233-908X), Min Kang (0000-0001-6864-7802), Hangyan Guo (0000-0002-4364-4004) 
College of Engineering, Nanjing Agricultural University, No. 40, Dianjiangtai Road, Pukou Distinct, Nanjing 
210031.  China.  Email: 1506036510@qq.com,  kangmin@njau.edu.cn, 2019112003@njau.edu.cn 

To investigate the effect of slow tool servo turning process parameters on surface roughness, we esta-
blished a high precision surface roughness prediction model. A guide to the selection of turning process 
parameters was compiled, and a turning test was conducted based on a response surface method (RSM) 
central composite design. ANOVA explores the influence law of process parameters on surface rou-
ghness. A RSM BP neural network model, and MEA-BP surface roughness model were established and 
the prediction performance of the three models was evaluated. The results show that the significant pro-
cess parameters affecting surface roughness are tool radius, discrete angle, feed rate, and cutting depth 
in descending order; and the prediction errors of RSM, BP, and MEA-BP are 11.41%, 19.67%, and 5.54%. 
This suggests that the MEA-BP model has the highest prediction accuracy with the same test data, RSM 
is second, whilst the single BP model struggles to capture multiple data characteristics and its prediction 
accuracy is poor. In addition, MEA can effectively solve the BP model falling into local optimum and 
improve the model prediction accuracy. 

Keywords: Process parameters, Surface roughness, Response surface method, BP neural network, Mind evolu-
tionary algorithm 

 Introduction 

Complex optical surface components play an in-
creasingly important role in optics, medicine, and de-
fense, owing to their excellent optical properties [1-4]. 
Slow tool servo turning technology can achieve re-
peated machining of complex optical surface compo-
nents with submicron or higher surface accuracy, na-
nometer surface roughness without treatment after 
machining, and high machining efficiency. It provides 
a new way to accurately machine complex optical sur-
faces with high efficiency [5-7]. 

Surface roughness affects the optical properties of 
curved components and is influenced by several fac-
tors such as cutting form and uneven cutting parame-
ters. Scholars have devoted themselves to investigat-
ing the relationship between surface roughness and 
process parameters in order to establish a condition-
specific surface roughness predictive model to guide 
the selection of machining parameters. Lin Y. C. et al. 
[8] used RSM to analyze the effects of spindle speed 
and cutting depth on surface roughness during cut-
ting, and established a BP neural network model of 
surface roughness based on spindle speed, cutting 
depth, and feed rate. Alajmi M. S. et al. [9] combined 
an artificial neural network, fuzzy algorithm, and evo-
lutionary algorithm to establish a prediction model us-
ing the ANFIS-QPSO machine learning method to 
improve the prediction accuracy of surface roughness 
of AISI 304 stainless steel after dry turning. Chen C. 

et al. [10] studied the influence law of process param-
eters on surface roughness through orthogonal tests 
and established a multivariate composite prediction 
model of surface roughness based on a simulated an-
nealing algorithm with a prediction accuracy of more 
than 95%. The model provides theoretical guidance 
for establishing a surface roughness prediction model 
for complex surface turning machining. Lu J. et al. [11] 
established a surface roughness prediction model 
based on PSO-SVM, PSO-BP, and PSO-SVM+PSO-
BP for milling creeping graphite cast iron, which 
proved that prediction models optimized by multiple 
algorithms often have a better prediction perfor-
mance, but prediction models established by the fu-
sion of multiple algorithms are more complicated and 
the prediction takes longer. 

Currently, research on surface roughness predic-
tion technology mainly focuses on traditional milling, 
cutting, and other fields, and research cases on slow 
tool servo turning technology are rare. Also, due to the 
superiority of RSM in exploring the interaction be-
tween independent variables and response values, and 
the excellent prediction fitting ability of the artificial 
neural network, this paper investigates the effect of 
turning process parameters on surface roughness by 
response surface test. It also establishes a RSM and BP 
neural network surface roughness prediction model 
based on test data and optimizes the BP model via a 
mind evolutionary algorithm to improve the model 
prediction accuracy. 
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 Test equipment and methods 

2.1  Equipment and materials 

Figure 1 shows the laboratory self-developed slow 
tool servo CNC machine tool, which includes two lin-
ear axes; X-axis and Z-axis, and a rotary axis; C-axis. 
The slow tool servo turning machine tool drives the 
diamond tool relative to the workpiece end face in the 
cylindrical coordinate system through C, X, and Z-
axes linkage to achieve a spiral trajectory cutting mo-
tion to realize the machining of complex surfaces [12]. 
The test machining material is polymethyl methacry-
late (PMMA), the cutting tool is the polycrystalline di-
amond (PCD), the front angle of the tool is 0°, and 
the back angle is 10°, and the cutting condition is dry 
cutting. 

 

Fig. 1 Slow tool servo turning stage 

2.2  Slow tool servo turning method 

In slow tool servo turning the point where the tool 
edge is at a tangent to the machined surface is called 
the cutting contact point (CCP). Since the CCP can be 
any point on the tool edge during cutting, it is neces-
sary to specify a fixed point on the tool to determine 
the position of the tool in the cutting process, which 
is called the cutting location point (CLP) [13]. The tool 
trajectory in slow tool servo turning machining should 
be consistent with the CLPs. Obtaining the CLPs 
from the CCPs by a compensation algorithm is crucial 
for achieving complex surface machining using slow 
tool servo turning technology. The process is shown 
in Figure 2. The discrete CCP is compensated accord-
ing to the tool shape and surface characteristics, to ob-
tain the CLP. The tool moves along the intercept line 
to the corresponding CLP to finish the machining of 
complex surfaces. In Figure 2, P is the CCP; CC is the 
intersection line between the workpiece and the cut-
ting plane; n is the normal vector of the surface at P; 
np is the projection of the normal vector on the cutting 

plane; tp is the tangential vector of P at the intersection 
line CC. 

 

Fig. 2 Diagram of tool compensation  
 
The most commonly used CCP trajectory planning 

approaches are equal parameter, section, spacing, and 
residual height methods [14, 15]. If C-axis is the rota-
tion axis and the workpiece to be machined is mostly 
a circular body, the equal section method is selected 
for the path planning, with the spiral column surface 
as the constraint surface [16, 17]. The slow tool servo 
turning CNC system can only manage the motion be-
tween specified points, so the tool contact trajectory 
must be discretized according to the corresponding 
rules. The standard methods for tool contact trajec-
tory discretization are equal angles discretization and 
equal arc length discretization. Tool compensation 
solves the correct position point, and compensation, 
before determining the tool parameters. Involved gen-
eral tool compensation parameters include the tool ra-
dius, tool back angle, and tool front angle. Compre-
hensive analysis shows that the parameters involved in 
slow tool servo turning of the machine are mainly tool 
radius, tool back angle, tool front angle, discrete angle, 
and discrete arc length, etc. The processing parameters 
can be determined according to the actual situation to 
complete the processing of complex surface compo-
nents. 

2.3  Response surface test design 

This experiment selected the central composite 
method in Design-Expert software to develop a 4-fac-
tor, 5-level test protocol. The factor coding levels are 
shown in Table 1. The values of each level were set 
from literature [18] and previous research results. The 
effect of tool radius (Rt), feed rate (af), cutting depth 
(ap), and dispersion angle (Δθ) on surface roughness 
was examined in the test. Design-Expert software was 
used to design the test with the center point and axis 
values set to 2, and a total of 26 sets of test protocols 
were obtained. 
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Tab. 1 Table of response surface experimental factor levels 

Factor Code 
Level 

-2 -1 0 1 2 
Rt/(mm) X1 0.25 0.50 0.75 1.00 1.25 

af/(mm/r) X2 0.01 0.02 0.03 0.04 0.05 
ap/(mm) X3 0.01 0.02 0.03 0.04 0.05 
Δθ/(°) X4 2 4 6 8 10 

 

2.4  Response surface prediction model construc-
tion 

Surface roughness is affected by the interaction of 
multiple process parameters, and the prediction model 
is nonlinear. Referring to the literature [19, 20], this 
paper chose the second-order response surface 
method to fit the relationship between each parameter 
and response value. The fitting equation is shown in 
equation (1). 

k k k-1 k
2

0 i i ii i ij i j
i=1 i=1 i=1 j=2

Y=β + β X + β X + β X X +ε    (1) 

Where:  
β0…Constant term, 
βi, βii, βij…Regression coefficients of the interaction  
terms, 
ε…Error term. 

2.5  Neural network prediction model construc-
tion 

This paper uses a three-layer BP neural network 
(input, hidden, and output layer) to create a surface 
roughness prediction model. The tool radius, feed 
rate, cutting depth, and discrete angle are used as input 
layer parameters, and the surface roughness is the out-
put layer parameters. There is no standard setting rule 
for the number of hidden layers, so we referred to the 
empirical formula (2) for the setting. The sigmoid 
function was chosen as the activation function for the 
hidden layer. The network learning rate was set to 
0.01, the maximum number of iterations was set to 
1000, and the Pearson coefficient was chosen to re-
flect the correlation between the actual and desired 
output. 

hid in outL = L +L +r,r=1 2 10、、. . . 、  (2) 

Where:  
Lhid…Number of nodes in the hidden layer, 
Lin…Number of nodes in the input layer, 
Lout…Number of nodes in the output layer. 

2.6  MEA-BP prediction model building 

The core of the BP neural network algorithm is a 
gradient descent method, an optimization algorithm 
that easily falls into the local optimum. Since the sur-
face roughness data sequence generated in slow tool 
servo machine turning contains linear, nonlinear, and 
other, features, it is difficult for a single BP prediction 

model to capture multiple data features, resulting in 
poor prediction results. Therefore, in this paper, we 
chose the MEA with vital global optimization seeking 
ability, relatively few parameters to be tuned, and fast 
convergence speed, to optimize the initial weights and 
thresholds of the BP neural network. It can accelerate 
the convergence speed of the BP neural network, 
avoid falling into local extremes and improve the pre-
diction accuracy [21, 22]. 

  
Fig. 3 MEA optimized BP neural network structure dia-

gram  
 
The MEA uses some of the basic concepts of ge-

netic algorithms, such as "population" and "individ-
ual," but there some new concepts have been added 
to MEA compared to GA [23, 24]: 

(1) Population and subpopulation: The set of all 
individuals in each generation of the evolutionary pro-
cess is called a population, and a population can be 
divided into several subpopulations. Subpopulations 
include the superior subpopulation and the temporary 
subpopulation. The superior subpopulation is used to 
record competition winners, whilst the temporary 
subpopulation is used to record the global competi-
tion process. 

(2) Bulletin board: The bulletin board is mainly 
used to record subpopulation serial numbers, actions, 
and scores. The subpopulation number is used to dis-
tinguish different individuals, and the description of 
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the action varies depending on the application area. 
For example, when applying the MEA to study param-
eter optimization problems, the action is the descrip-
tion of the specific position of the individual, and the 
score is the evaluation of the individual action by the 
environment. The subpopulation number, action, and 
score are used to quickly obtain the optimal individual. 

(3) Convergence and dissimilation: The process by 
which individuals in a subpopulation compete is called 
convergence. In the convergence process, if no winner 
is produced in the subpopulation, the convergence is 
over, and the subpopulation has matured. The process 
of subpopulations competing to win in the whole so-
lution space is called alienation. The alienation process 
is specified as follows: when the temporary subpopu-
lation scores higher than the superior subpopulation, 
the temporary subpopulation will replace the superior 
subpopulation, and the replaced superior subpopula-
tion will be released, and then the released individuals 
will once again search in the global scope to form a 
new temporary subpopulation. 

 Results and analysis 

3.1  Response surface method test results 

This test uses a JB-4C type contact surface rough-
ness measuring instrument to measure the workpiece 
surface roughness. As shown in Figure 4, the rough-
ness of the surface was measured at eight places at 
equal angles, and the maximum and minimum values 
of the measurement results were removed. The ob-
tained average value was deemed as the surface rough-
ness value. The test results are shown in Table 2. 

 

Fig. 4 Schematic diagram of surface roughness measurement 
 
Tab. 2 Response surface method test results 

Test nu-
mber 

Tool radius 
Rt/(mm) 

Feed rate 
af/(mm/r) 

Cutting depth 
ap/(mm) 

Divergence angle 
Δθ/(°) 

Surface roughness 
Ra/(μm) 

1 0.50 0.04 0.04 8 0.1222 
2 0.75 0.05 0.03 6 0.1053 
3 1.00 0.04 0.02 8 0.0950 
4 0.75 0.03 0.01 6 0.0727 
5 0.50 0.02 0.02 8 0.0872 
6 1.00 0.02 0.02 8 0.0743 
7 1.00 0.02 0.02 4 0.0725 
8 0.75 0.03 0.03 2 0.0805 
9 0.25 0.03 0.03 6 0.1612 
10 0.50 0.04 0.02 4 0.1067 
11 0.75 0.03 0.03 6 0.0722 
12 0.50 0.02 0.02 4 0.0920 
13 1.00 0.02 0.04 8 0.0680 
14 0.75 0.01 0.03 6 0.0540 
15 0.50 0.02 0.04 8 0.0952 
16 0.75 0.03 0.05 6 0.0710 
17 1.25 0.03 0.03 6 0.1180 
18 0.50 0.04 0.02 8 0.1137 
19 0.50 0.04 0.04 4 0.1102 
20 1.00 0.04 0.04 4 0.0982 
21 0.75 0.03 0.03 10 0.0743 
22 0.50 0.02 0.04 4 0.1038 
23 1.00 0.04 0.04 8 0.1058 
24 1.00 0.04 0.02 4 0.0900 
25 1.00 0.02 0.04 4 0.0683 
26 0.75 0.03 0.03 6 0.0685 

 
The regression equation analysis of the experi-

mental data was performed by Design-Exper soft-
ware. With the tool radius (X1), feed rate (X2), cutting 
depth (X3), and dispersion angle (X4) as independent 

variables and surface roughness (Y) as the response 
value, the response surface quadratic regression equa-
tion was fitted as: 
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1 2 3 4 1 2 1 3

1 4 2 3 2 4 3 4

2 2 2 2
1 2 3 4

Ra = 0.313-0.476X -2.207X -0.255X -0.011X +0.783X X -0.583X X

          +0.001X X +13.563X X +0.136X X +0.005X X

          +0.282X +26.281X +6.781X +0.0005X

 (3) 

3.2  Analysis of variance 

ANOVA allows the selection and ranking of non-
significant influences and determines the importance 
of each process parameter and its interaction on the 
response. In ANOVA, P<0.05 corresponds to a sig-
nificant factor effect, and P<0.01 corresponds to a 
highly significant effect [25]. In Table 3, the F-value of 
the model is 40.45, P<0.0001, indicating that the re-
gression model is highly significant; the F-value in the 
misfit test term of the model is 3.65, P>0.1, indicating 

that the regression model is not significantly misfit; the 
signal-to-noise ratio of the model is 28.352, which in-
dicates that the model can be used for prediction when 
the signal-to-noise ratio is greater than 4 [26]; 
R2=0.9809 and adjusted R2=0.9567. The two values 
are similar and close to 1, indicating that the model fits 
well and has high confidence. Three of the four factors 
were significant influences, in descending order of sig-
nificance; tool radius (X1), dispersion angle (X4), feed 
rate (X2), and cutting depth (X3). 

Tab. 3 Response surface model analysis of variance table 

Source Sum of squ-
ares 

df Mean square F-value p-value Significance 

Model 0.013 14 9.431×10-4 40.450 <0.0001 highly significant 
1X  3.750×10-3 1 3.750×10-3 160.200 <0.0001 highly significant 

2X  1.284×10-4 1 1.284×10-4 5.510 0.0387 significant 

3X  1.175×10-6 1 1.175×10-6 0.074 0.7913  

4X  1.295×10-4 1 1.295×10-4 5.550 0.0380 significant 

1 2X X  6.123×10-5 1 6.123×10-5 2.630 0.1334  

1 3X X  3.393×10-5 1 3.393×10-5 1.460 0.2530  

1 4X X  4.516×10-6 1 4.516×10-6 0.190 0.6684  

2 3X X  2.943×10-5 1 2.943×10-5 1.260 0.2851  

2 4X X  1.183×10-4 1 1.183×10-4 5.070 0.0457 significant 

3 4X X  1.806×10-7 1 1.806×10-7 7.747×10-3 0.9314  
2

1X  5.416×10-3 1 5.416×10-3 232.300 <0.0001 highly significant 
2
2X  1.206×10-4 1 1.206×10-4 5.170 0.0440 significant 
2
3X  8.027×10-6 1 8.027×10-6 0.340 0.5692  
2
4X  7.448×10-5 1 7.448×10-5 3.190 0.1015  

Residual 2.565×10-4 11 2.332×10-5    
Lack of fit 2.496×10-4 10 2.565×10-5 3.650 0.3881 not significant 
Pure Error 6.845×10-6 1 6.845×10-6    
Cor Total 0.013 25     

R2=0.9809 
Adj R2=0.9567 
Adeq Precision=28.3520 

3.3  Response surface analysis of surface rough-
ness 

The response surface method is used to analyze the 
degree of interaction effects on surface roughness, ob-
serve the strength of the interaction term effects and 
capture the trend of the effect of each parameter. As 

shown in Figure 5, each graph indicates the influence 
of the remaining two variables on the surface rough-
ness when any two variables from tool radius (Rt), feed 
rate (af), cutting depth (ap), and dispersion angle (Δθ) 
are located at the middle level. Theoretically, if the sur-
face slope is extensive, the interaction between the pa-
rameters significantly affects the response value. 
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(a) Response surface and contour plot of surface roughness under the interaction of tool radius and feed rate 

(b) Response surface and contour plot of surface roughness for the interaction of tool radius and cutting depth 
(c) Response surface and contour plot of surface roughness for the interaction of feed rate and cutting depth 

(d) Response surface and contour plot of surface roughness for the interaction between feed rate and discrete angle  

Fig. 5 Response surface and contour plot of surface roughness under the interaction between factors 
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As shown in Figure 5(a), with a specific feed rate, 
the surface roughness will show a trend of decreasing 
and subsequently increasing with an increase in tool 
radius. The influence of the tool radius on surface 
roughness is more significant with a low feed rate. 
This is because when the tool radius is within a spe-
cific range, the actual theoretical surface roughness 
trend remain the same, where the theoretical surface 
roughness value can be derived from the formula 
Ra=af

2/8Rt. However, when the tool radius is larger, 
the contact area between the cutting edge and the sur-
face of the workpiece increases, the friction becomes 
more extensive, and the squeezing effect increases. 
Simultaneously, the residual stress at the machining 
surface increases, and the surface roughness also be-
gins to increase. From Figure 5(b), it can be seen that 
surface roughness is significantly affected by tool ra-
dius, but with a specific tool radius, the surface rough-
ness will slowly increase with increases in cutting 
depth. The reason for this is that in the effective cut-
ting depth range, cutting depth will intensify the extru-
sion between the tool edge and the workpiece. Conse-
quently, the friction becomes more extensive, result-
ing in an increase in cutting force, which impacts the 
surface roughness. From Figure 5(c), it can be seen 
that surface roughness is more significantly affected 
by feed rate, and the two increase simultaneously 
when the cutting depth is specified. The reason is that 
as the feed rate increases, the cutting volume per unit 
time and the friction between the tool edge and the 
workpiece increase, augmenting the cutting heat, and 
resulting in a decline in surface quality, and an inevita-
ble increase in surface roughness. From Figure 5(d), it 
can be seen that the slope of the 3D response surface 
plot is more extensive, which indicates that the inter-
action between feed rate and discrete angle has a more 
significant effect on surface roughness, which is con-
sistent with the ANOVA results. When the feed rate 

is specific, the surface roughness shows a trend of de-
creasing and then increasing with increases in the dis-
persion angle. This is because when the dispersion an-
gle is small, the number of generated tool points is 
high, and the cutting volume per unit time is relatively 
high. The friction between the tool edge and the work-
piece increases, the cutting heat increases, and the sur-
face roughness increases. When the dispersion angle is 
large, the tool position points far away from the center 
of the workpiece are too scattered so it is difficult for 
the tool blade to remove all the material from the 
workpiece surface in one machining, causing the sur-
face roughness to increase. 

Using the Optimization module of the Design-Ex-
per software to limit the value range of surface rough-
ness optimization to 0.03~0.06μm, the optimal solu-
tion within the parameter range was obtained as fol-
lows: tool radius 0.86mm; feed rate 0.01mm/r; cutting 
depth 0.04mm; and discrete angle 8.3°. However, the 
tool compensation algorithm selects the equal angle 
discrete method to generate the CNC machining code, 
which must ensure that n=360°/Δθ is a positive inte-
ger, and the dispersion angle needs to be adjusted to 
8°. The RSM surface roughness prediction is 0.051μm 
under this parameter, and the actual surface roughness 
under this condition is 0.057μm with a relative error 
of 11.76%. In this paper, to test the predictive gener-
alization ability of the response surface model, another 
five sets of parameters were randomly set for the test 
(not repeated within the 26 sets of tests). The results 
are shown in Table 4, and it can be seen that the actual 
values correspond well with the predicted values, and 
the relative error is around 10%, with an average rela-
tive error of 11.41%. The data indicates that although 
the prediction performance of the RSM model has a 
certain degree of feasibility, its prediction accuracy 
needs to be improved. 

Tab. 4 Prediction results of RSM 

serial 
parameter predictive 

value/(μm) 
real va-

lue/(μm) 
absolute 

error/(μm) 
relative 

error/(%) Rt/(mm) af/(mm/r) ap/(mm) Δθ/(°) 
1 0.87 0.01 0.05 9 0.0472 0.0520 0.0048 10.17 
2 0.87 0.01 0.05 8 0.0476 0.0527 0.0051 10.71 
3 0.50 0.03 0.03 6 0.0980 0.1130 0.0150 15.31 
4 1.25 0.04 0.01 2 0.1420 0.1280 0.0140 9.86 
5 0.75 0.02 0.02 4 0.0660 0.0730 0.0070 10.61 
6 0.87 0.01 0.04 8 0.0510 0.0570 0.0060 11.76 

 

3.4  Establishment of BP neural network pre-
diction model 

In this paper, 25 sets of data from the central com-
posite design (excluding one set of duplicate test data) 
were randomly selected for training the network. Five 
sets of data and the optimal solution in Section 2.3 

were used to test the network. The whole process was 
performed on Matlab R 2020a. Since there is no stand-
ard criterion for determining the hidden layer number, 
and the number of hidden layer neurons (l) is calcu-
lated from equation (1) within a range of 4 to 12, the 
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networks with different numbers of hidden layer neu-
rons were individually tested. Figure 6 shows the ef-
fect of the number of neurons in the hidden layer on 
the network prediction performance, and as seen in 
Figure 6, the mean square error (MSE) value is small-
est when the number of neurons l is 8. Table 5 shows 
the relationship between the predicted and actual val-
ues of the neural network at l is 8. The average relative 
error of prediction is 19.67% six datasets, which indi-
cates that the prediction ability of the BP neural net-
work in this experiment is average, and the prediction 
accuracy needs to be improved. This partly due to the 
prediction accuracy of the BP neural network being 
greatly affected by connection weights and activation 
thresholds. The superior weights and thresholds are 
based on a large amount of sample data. The 25-sam-
ple data provided in this paper is relatively small, and 
the trained weights and thresholds are not necessarily 
the optimal outcomes, resulting in the poor generali-

zation ability of the network model. Currently, the net-
work is usually optimized using relevant algorithms to 
reduce the dependence of the network on weights and 
thresholds, increase the network fitting ability, and im-
prove its prediction accuracy. 

 

Fig. 6 Effect of the number of neurons in the hidden layer on 
network performance 

Tab. 5 BP neural network prediction results 

Serial 
Parameter Predictive 

value/(μm) 
Real va-
lue/(μm) 

Absolute  
error/(μm) 

Relative  
error/(%) 

Rt/(mm) af/(mm/r) ap/(mm) Δθ/(°) 

1 0.87 0.01 0.05 9 0.0670 0.0520 0.0150 22.39 

2 0.87 0.01 0.05 8 0.0660 0.0527 0.0133 20.15 

3 0.50 0.03 0.03 6 0.0940 0.1130 0.0190 20.21 

4 1.25 0.04 0.01 2 0.1080 0.1280 0.0200 18.52 

5 0.75 0.02 0.02 4 0.0880 0.0730 0.0150 17.05 

6 0.87 0.01 0.04 8 0.0710 0.0570 0.0140 19.72 
 

3.5  Establishment of MEA-BP neural network 
prediction model 

The initial BP neural network weights and thresh-
olds were optimized using MEA. The number of pop-
ulations and sample data was set to 200, the number 
of both superior and temporary subpopulations was 
set to 5, and the superior and temporary subpopula-
tions were required to have the same number of indi-
viduals. The parameters of the BP neural network 
were kept consistent with the above settings. Figures 
7 and 8 show the evolutionary process of the victori-
ous and temporary subpopulations in the MEA opti-
mization BP neural network. As can be seen from Fig-
ure 7(a), the overall score does not change after expe-

riencing four convergences, indicating that the supe-
rior subpopulations have all matured. The scores of 
superior subpopulations 1, 2 and 5 have not changed, 
indicating that there are no better individuals near 
these three temporary subpopulations, so no conver-
gence has occurred. From Figure 7(b), it can be seen 
that the score of temporary subpopulation 3 is higher 
than that of superior subpopulation 1 after all subpop-
ulations have matured, so an alienation operation is 
performed to improve the score of the superior sub-
population. For MEA, the higher the score of each 
subpopulation, the better the optimization perfor-
mance. After the dissimilation operation is completed, 
subpopulation 1 in the superior subpopulation will be 
released, and the system will search again within the 
whole solution space to form new subpopulations. 
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Fig. 7 Subpopulation convergence process before alienation 
(a) Temporary subpopulation convergence process before alienation, (b) Superior subpopulation convergence process before alienation 

 
Figures 8(a) and 8(b) show the score states of the 

temporary and superior subpopulations after aliena-
tion. From Figure 8(a), it can be seen that the score of 
the superior subpopulation is not increasing, indicat-
ing that all subpopulations have matured. From Figure 

8(b), it can be seen that after the dissimilation opera-
tion, all temporary subpopulations have lower scores 
than the superior subpopulation, indicating that each 
subpopulation has finished training and can be used 
for optimization training of the BP neural network

 

Fig. 8 Subgroup convergence process after alienation 
(a) Temporary subpopulation convergence process after alienation, (b) Superior subpopulation convergence process after alienation 
 
The above six sets of data were substituted into the 

MEA-BP model. The results are shown in Table 6. 
The average phase error of the MEA-BP model pre-

diction is 5.54%. The data shows that MEA can effec-
tively solve the problem of the BP neural network fall-
ing into local optimal solutions and improve the mod-
el's prediction accuracy. 

Tab. 6 MEA-BP neural network prediction results 

Serial 
Parameter Predictive 

value/(μm) 
Real va-
lue/(μm) 

Absolute er-
ror/(μm) 

Relative  
error/(%) Rt/(mm) af/(mm/r) ap/(mm) Δθ/(°) 

1 0.87 0.01 0.05 9 0.0490 0.0520 0.0030 6.12 
2 0.87 0.01 0.05 8 0.0543 0.0527 0.0016 2.95 
3 0.50 0.03 0.03 6 0.1060 0.1130 0.0070 6.60 
4 1.25 0.04 0.01 2 0.1210 0.1280 0.0070 5.79 
5 0.75 0.02 0.02 4 0.0770 0.0730 0.0040 5.19 
6 0.87 0.01 0.04 8 0.0610 0.0570 0.0040 6.56 
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3.6  Establishment of MEA-BP neural network 
prediction model 

In this paper, Mean Square Error (MSE) and the 
coefficient of determination R2 are used as evaluation 
indicators. MSE is defined as: 

n
2

i i
i=1

1
MSE= (f -y )

n  (4) 

Where: 
 fi…Predicted value, 
yi …Actual value. 

The correlation values of each model are shown in 
Table 6. It can be seen that the prediction mean square 
errors of BP, RSM, and MEA-BP gradually decrease, 
indicating that the prediction accuracy of the model 
gradually improves; the determination coefficient R2 
of MEA-BP is closest to 1, indicating that the network 
fits better. Therefore, compared with BP and RSM, 
the MEA-BP model has the highest prediction ac-
curacy. 

Tab. 7 Table of prediction parameters of each model 
Parameter RSM BP MEA-BP 

MAE 0.00094 0.0011 0.00091 
R2 0.9809 0.9254 0.9989 

 
The prediction accuracy of the three prediction 

models was compared and analyzed based on the 
above six sets of test data, and the results are shown 
in Figure 9. The prediction accuracy of the MEA-BP 
model is the highest, with RSM the second highest. 
The MEA-BP and RSM models meet the error requi-
rements and could be applied in predicting the surface 
roughness of slow tool servo turning. The BP neural 
network relative prediction error is more extensive 
when directly applied to the prediction of surface rou-
ghness, displaying a significant prediction error. 
However, considering the influence of the test data 
volume on the BP model and the advantages of its 
simple structure and fast prediction speed, the 
following finite number of tests can be developed with 
the help of RSM to increase the test data volume in 
order to reduce the prediction error of the BP model, 
and facilitate the application of the BP model in tur-
ning tests with low prediction accuracy requirements. 

 

Fig. 9 Effect of the number of neurons in the hidden layer on 
network performance 

 

 Conclusions 

1) The RSM test was carried out via the central 
composite design method. Four factors: tool radius, 
feed rate, cutting depth and dispersion angle, were se-
lected as the independent variables. Surface roughness 
was used as dependent variable to establish the re-
sponse surface model. The significance of influencing 
surface roughness was determined by ANOVA, in 
descending order: tool radius, dispersion angle, feed 
rate and cutting depth. 

2) RSM and BP neural network prediction models 
were constructed based on the test data. The test data 
validation showed that the prediction relative error 
was 11.41% for the RMS model and 19.67% for the 
BP neural network. The prediction and promotional 
ability of the RSM model was higher than the BP neu-
ral network in this experiment. 

3) MEA was used to optimize the BP neural 
network. Test data validation shows that the average 
relative error of the MEA-BP model (σ3=5.54%) is 
lower than RMS (σ2=11.41%) and the BP model 
(σ1=19.67%), with the highest prediction accuracy, in-
dicating that the MEA algorithm has a better opti-
mization effect. The prediction errors of MEA-BP 
and RSM models are within the acceptable range and 
can be applied to guide the subsequent slow tool servo 
turning test. 
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