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The microstructure and mechanical properties of selectively laser melting (SLM)-manufactured 316L sta-
inless steele were evaluated by scanning electron microscopy, tensile testing at ambient temperature and 
Charpy impact test. These samples were compared with as-built samples. Following heat treatment con-
ditions were used: 500 °C for 2/4 hours, 650 °C for 2 hours and 900 °C for 1 hour. Cooling took place in 
furnace and in furnace with opened valve. Compared to as built samples the heat treatment at lower 
temperature negatively influenced elongation but increased the amount of energy absorbed by material 
during fracture. 
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 Introduction 

Additive manufacturing has been lately evolving 
rapidly. It advanced from printing prototypes and 
non-functional parts to printing geometrically com-
plex components and functional parts with minimal 
shape limitations. One of the additive manufacturing 
methods suitable for metals and alloys is selective laser 
melting (SLM) a powder bed process with laser mel-
ting layers of powder [1]. Parts are built in an inert at-
mosphere layer-by-layer and wide range of materials 
can be used – such as titanium alloys, stainless steels, 
nickel-base superalloys or aluminium alloys [2][5]. 

Components fabricated by additive manufacturing 
can have large residual stress, pores, defects or ele-
mental segregation. The residual stress in SLM fabri-
cated 316L stainless steel can reach 500 Mpa [6]. Op-
timalization of SLM process and heat treatment is usu-
ally used to minimize these issues. Apart from heat 
treatment the influence of powder speed, laser power, 
the size of powder etc. has been studied. Mechanical 
properties of additively manufactured components are 
heavily affected by microstructural defects [7][8]. In-
volving post-processing heat treatment to optimize 
SLM process is integral step to improve mechanical 

and functional properties of components before pla-
cing them in service [4][9]. 

316L is an austenitic stainless steel commonly used 
in aeronautics industry, in automotive, for medical 
equipment, in petrochemical and chemical industry, in 
food processing, for military use and in jewellery. 
Using additive manufacturing for complex and com-
plicated parts instead of conventional methods is 
more effective and the amount of waste material is 
decreased [3][4]3[11].  

In this paper, the mechanical performance of SLM 
manufactuerd 316L samples in relation to varying 
post-processing heat treatment conditions were inves-
tigated. Heat treated samples were commpared to 
samples with no post-processing (as-built samples). 

 Experimental program 

2.1 Material and heat treatment 

Testing samples were made on manufacturing sys-
tems on EOS M 290. The system has following para-
metres: Yb-fibre laser, maximum power of 400 W, F-
theta lens and the building chamber has dimensions 
(WxDxH) 250 mm x 250 mm x 325 mm [11]. The che-
mical composition of 316L steel is listed in Tab. 1. 

Tab. 1 Chemical composition of 316L steel 
Wt [%] C Mn Si P S Cr Mo Ni N Fe

AISI316L 
0.03 2.0 0.75 0.045 0.03 16.0-

18.0 
2.0-3.0 10.0-

14.0 
0.1 Bal.

As can be seen in Fig. 1 24 samples for tensile tes-
ting and 25 samples for Charpy impact testing were 
manufactured. Two samples from both sets remained 
as-built. The rest underwent various heat treatment. 

Summary of used heat tratment conditions is specified 
in Tab. 2 in a temperature – time on temperature – 
cooling format. Cooling took place in closed furnace 
or in furnace with opened valve.  
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Fig. 1 Samples for tensile testing and Charpy impact testing 

Tab. 2 Summary of used heat threatment conditions 
No. Heat treatment conditions 

1 650 °C - 2hrs - furnace 
2 650 °C - 2hrs - valve 
3 500 °C - 4hrs - furnace 
4 500 °C - 4hrs - valve 
5 500 °C - 2hrs - furnace 
6 500 °C - 2hrs - valve 
7 900 °C - 1hr - furnace 
8 900 °C - 1hr - valve 

The temperature of 650 °C was chosen to elimi-
nate residual stress in material. Lower temperatures of 
annealing (500 °C) were used to decrease the possibi-
lity of forming M23C6 precipitates. Forming of car-
bides is slower at lower temperatures. Heating 316L 

steel to 900 °C can cause intergranular corrosion in-
flicted by M23C6 precipitates but was selected to eva-
luate its benefits with residual stress.  

2.2 Microstructure and mechanical testing 

Analysis of microstructure was done on BX61 
Olympus light microscope, Zeiss EVO 25 (LaB6 cat-
hode) and Tescan VEGA 3 (Tungsten cathode) scan-
ning electron microscopes (SEM). Etched metallo-
graphic samples were inspected as well as fracture sur-
faces. Tensile testing was performed on Zwick Roell 
Z250 materials testing machine with central ball-lead 
screw at ambient temperature. Charpy impact testing 
was performer on Zwick Roell RKP450 pendulum im-
pact tester. Hardness HV10 was measured both on 
top cross section and side cross section. 

 Results and discussion 

When the microstructures were observed under 
the light microscope, it was possible to see laser tracks 
crossing at 67° angle on the as-built sample (Fig. 2 a). 
As the samples were heat treated at hight temperatu-
res, the laser tracks were disappearing (Fig. 2 b-c). Melt 
pool boundaries are disappearing at temperatures 
around 700 °C. At 900 °C the boundaries starts to thin 
and as can be seen in Fig. 2 the melt pool boundaries 
are almost completely dissolved. The cellular structure 
that is common in SLM manufactured parts is also dis-
solving with higher temperatures. Cell walls have 
higher dislocation density. Melt pools and cellular 
structures are both chemical segregations and once 
they are dissolved, the grains are homogeneous[1][12].  

  

Fig. 2 Light micrographs of top cross sections of various heat treatments – a) as built sample; b) 500 °C – 2hrs – valve; c) 650 
°C – 2hrs – furnace; d) 900 °C – 1hr - furnace 
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On the Fig. 3 can be seen SEM micrograph of 
sample 500 °C – 2hrs – valve with a energy dispersive 
spectroscopic (EDS) map. Cellular structure can be 
seen, but elements are evenly distributed. On the other 
hand in the Fig. 4 of sample 900 °C – 1hr – furnace it 

is clearly wisible, that cellular structure is almoct com-
pletely dissolved and new particles (σ precipitates) are 
forming. The particles are situated on the boundaries 
of austenite grains and have higher density of Cr and 
Mo[3].  

 
Fig. 3 EDS of sample with heat treatment of 500 °C – 2hrs - valve 

 
Fig. 4 EDP of sample with heat treatment of 900 °C – 1hr – furnace 

In the Graph 1 is a summary of results from 
Charpy impact testing. Every executed heat treatment 
except 900 °C – 1hr – furnace are the levels of 

absorbed energy higher than in as built samples. This 
can be caused by forming M23C6 precipitates or in-
tergranular corrosion.  

 
Graph 1 Results of Charpy impact testing – amount of energy absorbed by material during fracture 
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As seen in Graph 2 and Graph 3 heat treatment at 
lower temperatures resulted in decrease of elongation 
during tensile testing. In heat treatment at the tempe-
rature of 900 °C is elongation slightly higher than in as 
built samples. Similar trend can be seen in yield 

strength. In comparison ti as built samples heated to 
900 °C have lower yield strength. In ultimate tensile 
strenght are not any radical diferences between as built 
samples and heat treated samples.  

 

Graph 2 Stress – deformation graph 

 
Graph 3 Results of tensile testing 

In Tab. 3 is a summary of measured hardness 
HV10. Average values do not differ too much from as 
built sample. The lowest average hardness values were 

measured on sample 900 °C – 1hr – furnace on both 
top cross section and side cross section. 

Tab. 3 Hardness HV10 
 HV10 - top cross section HV10 - side cross section

 1 2 3 Average 1 2 3 Average
as built 208 210 213 210 211 215 219 215
650 °C - 2hrs - furnace 200 198 197 198 199 198 194 197
650 °C - 2hrs - valve 197 198 199 198 199 203 205 202
500 °C - 4hrs - furnace 208 214 212 211 223 226 225 225
500 °C - 4hrs - valve 210 207 208 208 219 221 219 220
500 °C - 2hrs - furnace 209 215 213 212 210 213 219 214
500 °C - 2hrs - valve 216 215 215 215 215 218 217 217
900 °C - 1hr - furnace 193 187 185 188 184 182 194 187
900 °C - 1hr - valve 183 188 190 187 203 188 194 195
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 Conclusions 

This study investigated the effects of heat tre-
atment on mechanical properties and microstructure 
of additively manufactured stainless steel 316L. Three 
different heat treatment temperatures were used: 500 
°C, 650 °C and 900 °C with cooling in closed furnace 
or in furnace with opened valve. Heat treated samples 
were compared with as built samples.  

The mictrostructue and mechanical properties of 
stainless steel 316L are affected by heat hreatment 
conditions. Lower temperatures (recovery process) 
causes decrease of elongation but increse in the 
amount of absobed energy during fracture. Cellular 
structure and melt pools are not dissolving.  

Higher temperatures (homogenisation process) 
causes increase of elongation. Samples treated at 900 
°C reached elongation values 30 % - in comparison 
samples treated at 500 °C had elongation valus as low 
as 16 %.  

At the temperature of 900 °C was clearly seen how 
melt pools and cellular structure were dissolving. In 
the microstructure were forming new particles identi-
fied as σ precipitates. Since these particles were foming 
on the boundaries they could have contributed to the 
change of mechanical properties. The results of HV10 
hardness measurements does not show any grand di-
fferences. 
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