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The diffusion boriding process allows increasing the abrasion and corrosion resistance of the majority of 
steel grades. The aim of this study was to determine the influence of the chemical composition of the 
substrate of various steel grades on the microstructure of boride coatings produced using two diffusion 
methods: pack cementation boriding using EKABOR-2 and paste-pack boriding using EKABOR-
PASTE on the substrate of tool and structural steels:. The boriding processes were carried out at 1000oC 
in an argon atmosphere for 4h. Microstructural investigations of the obtained coatings indicate that a 
high content of alloying elements increasing the FeB (Cr, Mo, W) phase, results in the formation of an 
external, continuous layer of FeB borides. It was found that with increasing alloying element and carbon 
concentration, the total thickness of the boride coatings decreases. In particular, chromium content be-
low about 1%, with a carbon content below about 0.4%, significantly limits or prevents the formation of 
the FeB phase. Increasing the content of alloying elements and carbon, results in a change in the mor-
phology of the iron borides.  
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Introduction 

At the end of the 19th century, it was noticed that 
an increase in the hardness and wear resistance of steel 
components was possible due to the diffusion of boron 
atoms deep into their surface layer [1]. Significant im-
provements in corrosion resistance [2-8] and heat re-
sistance [9] of many steels subjected to diffusion bo-
riding have also been demonstrated. Due to the simpli-
city and low cost of the method, and most of all, the 
possibility of significant improvement of functional 
properties of metallic materials, iron alloys [10-12], nic-
kel [13,14], titanium [15,16] and cast irons [17] have 
been subjected to boriding, usually at 850 - 1000oC, for 
1 - 10 h [18].  

The diffusion boriding process can be carried out in 
solid, liquid or gaseous media, under glow discharge 
conditions, or by boron ion implantation. Among the 
many available boriding methods, pack boriding has 
found the widest practical application, due to the lack 
of need to use expensive and complicated apparatus 
and the possibility of easily changing the chemical com-
position of the boriding mixture [12,19]. It consists of 

several basic substances: a boron-bearing substance, an 
activator and filler. The type and content of the boron-
bearing substance, which is usually B4C, B2O3, or 
amorphous boron, determine the saturation capacity of 
the powder. The presence of an activator (e.g. NaF, 
NaCl, KBF4, Na2B4O7) in an amount of a few wt.% 
increases the intensity of transport of boron atoms 
from the saturating medium through the gas phase to 
the substrate surface of the workpiece, significantly 
shortening the processing time. The last component of 
the mixture is an inert filler (e.g. Al2O3, MgO, kaolin, 
SiC), which prevents sintering of the powder during the 
process and reduces the boron potential, counteracting 
the formation of a brittle FeB phase. 

In the diffusion boriding process, the previously cle-
aned components are placed in a heat-resistant steel 
container, backfilled with the powder mixture and se-
aled with low-melting glass. The container is then pla-
ced in an electric resistance furnace at atmospheric 
pressure, heated to 850 - 1100oC and held for 2-24 h 
[10,12,18]. The mechanism of the boriding process 
starts with the heat-activated diffusion of boron atoms 
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and their adsorption on the surface of the substrate ma-
terial. Then the boron atoms build into the crystal la-
ttice, diffuse deep into the element to form borides. In 
order to determine the kinetics of the boriding process, 
experimental processes are carried out for different ste-
els constituting the substrate material [20-24]. Numeri-
cal methods for modelling the kinetics of the boriding 
process are also being developed [25-30].  

The study [31] describes the mechanism of forma-
tion of boride layers on 34CrAlMo5-10 steel substrate. 
Depending on the boriding potential of the mixture 
used [32], the chemical composition of the substrate 
and the process parameters, single or two-phase coa-
tings were formed. Below the layer composed of FeB 
and Fe2B iron borides, there was a diffusion zone - a 
solid solution of boron in iron. Within this zone, as a 
result of boron and carbon supersaturation, carbide bo-
rides of iron or alloying elements may form [10,19]. 
Due to the high brittleness of FeB borides, a two-phase 
microstructure (FeB+Fe2B) is undesirable. Additiona-
lly FeB borides are characterized by a different value of 
the thermal expansion coefficient compared to Fe2B. 
This results in the formation of significant tensile stres-
ses in the two-phase layers during cooling after the bo-
riding process, which are the cause of the appearance 
of cracks at the boride boundaries [10,11,18].  

By modifying the carbon and alloying element con-
tent, it is possible to influence the thickness and 
morphology of boride coating. The optimum coatings 
thickness for low-carbon and low-alloy steels is 50 - 250 
um, while for high-alloy steels it is in the range of 25 - 
76 um [11]. In low-carbon and low-alloy steels, the bo-
rides formed have a needle-like structure [28] providing 
exceptional adhesion to the substrate [33]. Due to the 
lower brittleness and favourable compressive stress 
state, a coating consisting exclusively of Fe2B borides is 
desirable. In high-alloy steels, alloying elements such as 
Cr, Ni, Mo, W, V concentrate at the vertices of the re-
sulting boride columns, causing a reduction in the di-
ffusion flux of boron atoms in these zones. This results 
in inhibition of vertex growth, leading to formation of 
a flat boride/substrate interfacial boundary. Increasing 
the Cr content to about 6% results in the complete di-
sappearance of the needle-like structure and an increase 
in the proportion of the FeB phase [10,11]. This was 
confirmed, among others, in the ref. [34], where the bo-
riding of AISI 310 stainless steel containing 25% Cr and 
19.5% Ni resulted in a flat front of boride coatings 
composed of iron, nickel and chromium borides. The 
Si and Al present in the steel reduce the boride growth 
kinetics and are pushed out in front of the boride front, 
forming a band of low hardness ferrite [10]. A recent 
study [35] suggests that Mn increases the growth kine-
tics of boride layers and produces a needle-like 
morphology of them. High carbon content in steels is 
also the reason for obtaining a smoothed boride front. 
The reason for this is the lack of solubility of carbon in 
FeB and Fe2B, which forces its diffusion into the steel, 
leading to an increase in its concentration in front of the 

growing boride front. This, in turn, results in a slower 
diffusion of boron, causing a "smoothing" of the bo-
ride/substrate interfacial boundary and a decrease in 
the thickness of the films obtained [10,11,18]. A flat 
front of FeB and Fe2B borides was obtained by bo-
riding AISI M2 high speed steel [20,27], AISI D3 tool 
steel [36] and high-alloy cold work steel containing 
0.9% C, 7.8% Cr, 2.5% Mo, 0.5% Mn, 0.5% V [9].  

The resulting boride coatings enable the impro-
vement of many performance properties of the steel 
substrate. Apart from the obvious increase in the hard-
ness of the surface layer, powder-pack boriding allows 
for a significant improvement in abrasive wear re-
sistance: 41-fold AISI 316L stainless steel [37,38], 7-
fold AISI 310 heat-resistant austenitic steel [34], 13-fold 
AISI H13 and AISI D2 tool steels [39], 5-fold AISI H10 
tool steel [40] and C35 steel [7], 4-fold D6 tool steel 
[41], and 7-fold Hardox 450 and HiTuf steel [42]. Sig-
nificant improvements can also be achieved in corro-
sion resistance: 17-fold tool steel in 4% HCl solution [8] 
and 4 to 6-fold C35 steel in 5% H2SO4, HCl, HNO3, 
NaCl, NaOH solutions [3]. In addition, pack boriding 
of AISI 316L SS steel allowed a 2-fold increase in its 
resistance to high-temperature oxidation 
(24h/1000oC). Studies have also been carried out on 
the fracture resistance of boride coatings [43] and their 
adhesion to the substrate [44]. 

Despite a number of advantages resulting from the 
application of the boriding process to the treatment of 
steel machine parts, nitriding and carburising are still 
much more frequently used in industrial practice. In the 
available publications, there is no data on the boriding 
of many steel grades with different alloying element 
contents. The influence of alloying elements on the 
microstructure of borated steels is extremely important 
and allows optimisation of the process parameters in 
order to obtain coatings with the desired properties. 
Therefore, the aim of this study was to determine the 
influence of the chemical composition of the substrate 
of various steel grades on the microstructure of boride 
coatings produced using two diffusion boriding met-
hods: pack boriding using EKABOR-2 and paste-pack 
boriding using EKABOR-PASTE on the substrate of 
tool and structural steels. 

 Experimental 

The substrate material used in the study was supplied 
in the form of bars with a diameter of ϕ30 or ϕ35 mm, 
(depending on availability) from which 30 mm high 
samples were cut. The processes were carried out on 13 
selected steel grades, which are listed in Table 1. The next 
stage was grinding using an ATM-M SAPHIR 330 grin-
der-polisher with water-resistant abrasive papers of 80      
to      500      mesh.      The      samples     prepared 
in   this   way   were   subjected   to   diffusion   boriding
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The diffusion boriding processes were carried out us-
ing EKABOR-2 powder with the composition (wt. 
%): 90%, SiC, 5% B4C, 5% KBF4 and EKABOR-
PASTE paste of identical composition.  
The process was carried out using a Bernex BPX Pro 
325S at 1000°C for 4 hours in an argon atmosphere. 
After the boriding process metallographic samples 
were prepared. The microstructure was studied using 
a Phenom XL scanning electron microscope (SEM) 
equipped with an EDS spectrometer - Energy Disper-
sive X-ray Spectroscopy. The obtained boride layers 
were assigned to different groups according to the 
classification proposed by Voroshnin and Lyakhovich 
[19] and previously conducted XRD analysis of similar 
coatings [58]. 

 Results  

 The Results of microstructure investigation 
of boride coatings on tool steel substrates 

On the substrate of 145Cr6 (NC6) tool steel, after 
pack boriding in EKABOR-2 (Fig. 1b), a coating was 
formed consisting of two zones: an outer, continuous 

FeB (18 um) and inner, continuous Fe2B (67 um). The 
formation of FeB is due to the presence of Mn and Cr 
in the steel, which increase its amount [19]. According 
to previous XRD analysis [58] as well as the classifica-
tion adopted, the structure obtained was assigned to 
structure model no. I [19]. However, after paste-pack 
boriding in EKABOR-PASTE (Fig. 1a), only a con-
tinuous layer of Fe2B borides (85 um) was formed, 
which allows it to be classified as structure no. II. The 
low content of alloying elements makes the morphol-
ogy of the formed borides needle-like in both cases. 

Pack boriding with EKABOR-2 of X165CrV12 
steel (NC10) resulted in the formation of a two-zone 
coating (Fig. 2b): an outer, continuous FeB (12 um) 
and inner, continuous Fe2B (33 um). The high Cr con-
tent in the steel substrate favors the formation of FeB 
borides. According to XRD analysis [58] and literature 
data [19], this structure was classified as no. I. Boriding 
in EKABOR-PASTE (Fig. 2a) resulted in a single-
zone continuous Fe2B (50 um) coating, which corre-
sponds to model no. II. In both cases the resulting 
coatings were blunted and branched, which is a con-
sequence of the high Cr content in the substrate [19].

Tab. 1 Chemical composition of substrate materials - tested steel grades according to standards: PN-EN 10088-1, PN-EN 10085, 
PN-EN 10084:2008, PN-EN 10083-3, PN-89/H-84030/02, PN-EN ISO 4957, PN-86/H-85023  

145Cr6 (NC6) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

1.30-1.45 1.40-1.70 0.15-0.40 <0.03 <0.03 1.30-1.65 - - 0.10-0.25 - - - 
X165CrV12 (NC10) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
1.50-1.80 0.15-0.45 0.15-0.40 <0.03 <0.03 11.0-13.0 - - - - - - 

X153CrMoV12 (NC11LV) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

1.45- 1.60 0.20-0.60 0.10-0.60 <0.03 <0.02 11.0-13.0 0.70-1.00 0.70-1.00 - - - 
90MnCrV8 (NMV) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
0.85-0.95 1.80-2.20 0.10-0.40 <0.03 <0.03 0.20-0.50 - - 0.05-0.20 - - - 

60WCrV8 (NZ3) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

0.55-0.65 0.15-0.45 0.70-1.00 <0.03 <0.02 0.90-1.20 - - 0.10-0.20 - - 1.70-2.20 
X37CrMoV5-1 (WCL) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
0.33-0.41 0.25-0.50 0.8-1.2 <0.03 <0.02 4.80-5.50 1.10-1.50 - 0.30-0.50 - - - 

HS6-5-2 (SW7M) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

0.80-0.88 <0.4 <0.45 <0.03 <0.03 3.80-4.50 4.70-5.20 - 1.70-2.10 - - 5.90-6.70 
18NiCrMo7-6 (17HNM) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
0.14-0.19 0.40-0.70 0.17-0.37 <0.035 <0.035 1.50-1.80 0.25-0.35 1.40-1.70 - - - - 

S355 (18G2A) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

<0.20 <1.50 0.20-0.50 <0.035 <0.035 <0.30 - <0.30 - - <0.30 - 
16MnCr5 (16HG) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
0.14-0.19 1.00-1.30 <0.40 0.025 <0.035 0.90-1.20 - - - - - - 

41CrAlMo7-10 (38HMJ) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Al.: Cu: W: 

0.38-0.45 0.40-0.70 <0.4 <0.025 0.035 1.50-1.80 1.20-0.35 - - 1.80-1.20 - - 
X12Cr13 (1H13) 

C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 
0.08- 0.15 <1.5 <1 <0.04 <0.015 11.5- 13.5 - <0.75 - - - - 

34CrNiMo6 (34HNM) 
C: Mn: Si: P: S: Cr: Mo: Ni: V: Co: Cu: W: 

0.30-0.38 0.50-0.80 <0.40 <0.025 <0.035 1.30-1.70 0.15-0.30 1.30-1.70 - - - - 
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Fig. 1 Cross-section of boride coating formed on 145Cr6 
(NC6) steel substrate. Paste-pack boriding in EKABOR-

PASTE (a) and pack boriding in EKABOR-2 (b): 
1000oC, 4 hours 

 
Fig. 2 Cross-section of boride coating produced on 

X165CrV12 (NC10) steel substrate. Paste-pack boriding in 
EKABOR-PASTE (a) and pack boriding in EKABOR-2 

(b): 1000oC, 4 hours 

 

Fig. 3 Cross-section of the boride coating produced on the sub-
strate of X153CrMoV12 (NC11LV) steel. Paste-pack 
boriding in EKABOR-PASTE (a) and pack boriding in 

EKABOR-2 (b): 1000oC, 4 hours 

After pack boriding of X153CrMoV12 (NC11LV) 
steel, an outer continuous FeB boride layer (17 um) 
and an inner continuous Fe2B layer (30 um) were ob-
tained (Fig. 3b) [58]. This steel contains Cr, V and Mo, 
which increases the amount of FeB phase very 
strongly, hence the greater thickness compared to 
NC10 steel. The resulting coatings were blunted and 
branched, which is a consequence of the high alloying 
element content [19, 58]. Such a structure was as-
signed to model No. I [19]. Boriding this steel in a 
paste did not produce a boride coating (Fig. 3a). 
Oliveira et al. [45] carried out a boriding process for 
similar AISI D2 steel using a borax bath with 10 wt.% 
Al. Al (1000oC/4h), which resulted in an outer zone 
of FeB and an inner zone of Fe2B, with a total 

thickness of 90 um and a typical needle-like shape of 
the resulting phases. In comparison, pack boriding in 
EKABOR-3 of this steel (at 900oC for 2-8h), resulted 
in the formation of boride coatings with thicknesses 
ranging from 24 to 40 um [46]. 

On the substrate of 90MnCrV8 (NMV) steel, a dis-
continuous outer layer of FeB borides (4 um) and a 
continuous inner layer of Fe2B borides (77 um) were 
formed by pack boriding (Fig. 4b). This phase compo-
sition [58] and structure were classified as model no. 
XI [19]. Paste boriding (Fig. 4a) resulted in a continu-
ous Fe2B boride layer (92 um), allowing this structure 
to be assigned to model no. II [19]. In both cases the 
boride layer had a needle-like structure, which may be 
due to the low content of alloying elements (including 
about 2% Mn) in the steel. 

 

Fig. 4 Cross-section of a boride coating produced on a 
90MnCrV8 (NMV) steel substrate. Paste-pack boriding in 
EKABOR-PASTE (a) and pack boriding in EKABOR-2 

(b): 1000oC, 4 hours 

Pack boriding of 60WCrV8 steel (NZ3) led to the 
formation of a two-zone boride coating (based on 
XRD  ref. [58]), consisting of a discontinuous FeB (7 
um) boride layer and a continuous Fe2B (62 um) layer, 
so this structure (Fig. 5b) was assigned to model no. 
XI [19]. After paste boriding, a discontinuous, single-
zone Fe2B (54 um) layer was formed (Fig. 5a), which 
allowed this structure to be assigned to model no. IX 
[19]. In both cases the borides have a needle-like 
shape. Furthermore, a large number of bright precipi-
tates were observed between and under the needles of 
the Fe2B borides. According to [19], this may be sili-
con ferrite, formed due to the expulsion of silicon in 
front of the front of the growing borides. 

 

Fig. 5 Cross-section of a boride coating produced on a sub-
strate of 60WCrV8 (NZ3) steel. Paste-pack boriding in 

EKABOR-PASTE (a) and pack boriding in EKABOR-2 
(b): 1000oC, 4 hours 
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On the substrate of X37CrMoV5-1 (WCL) steel, 
two zones were formed in coating produced by pack 
boriding process (Fig. 6b): an outer continuous FeB 
layer (25 um) and an inner continuous Fe2B layer (47 
um). This structure is due to the high content of Cr 
and Mo, which strongly increase the amount of FeB 
phase [based on XRD ref. 58]. This structure was clas-
sified as model no. I [19]. In contrast, paste boriding 
resulted in the formation of an exclusively continuous 
Fe2B boride zone (99 um) and was therefore assigned 
to model no. II [19]. The both boride coatings formed 
were characterised by a needle-like structure. A small 
number of bright precipitates were observed under the 
Fe2B layer, which may be compounds of elements 
pushed out in front of the front of the growing bo-
rides [19]. In a study [47], the steel was pack-borided 
in EKABOR-II powder at 950oC for 5h. A coating of 
FeB (15 um) + Fe2B (43 um) borides with a needle-
like morphology was formed [58]. A powder mixture 
was also used consisting of 90 wt.%. B4C + 10 wt.%. 
NaBF4, obtaining for 1000oC and 4h process, a FeB 
(outer) + Fe2B (inner) boride layer with a total thick-
ness of 110 um [48]. 

In the case of HS6-5-2 steel (SW7M), pack borid-
ing (Fig. 7b), led to the formation of boride layers: 
continuous FeB (13 um) and continuous Fe2B (29 um) 
(based on XRD in ref. [58]). The continuous and com-
pact FeB layer is due to the high content of alloying 
elements increasing the amount of the FeB phase (Cr, 
Mo, W). However, their high content (ca. 18 wt.%), 
together with ca. 0.84 wt.%. C, resulted in a low total 
thickness of the produced boride layers [19]. This mi-
crostructure was assigned to model no. I. Paste borid-
ing (Fig. 7a) resulted in a single-zone continuous Fe2B 
boride lcoating (53 um)-model II. In ref. [20], similar 
AISI M2 steel was pack borided in EKABOR-I at 850- 
1050oC for 2-8h. The results of microscopic observa-
tions and XRD analysis confirmed the presence of 
FeB and Fe2B borides with a flat front, the thickness 
of which increased parabolically with increasing time 
and temperature of the boriding process (3-141 um). 
In another publication [4], the steel in question was 
subjected to pack boriding in EKABOR-II powder at 
950oC for 6h, obtaining a coating 55 um thick consist-
ing of FeB and Fe2B borides, among others. The au-
thors of the article [49] demonstrated the presence of 
a biphasic boride zone: FeB + Fe2B with a needle-like 
morphology, formed by paste boriding AISI M2 steel 
in Durborid© at 900- 1000oC for 1-7h. The thickness 
of the coatings increased with increasing process time 
and temperature from 10 to 66 um. A contour plot 
have FeB and Fe2B boride thickness as a function of 
powder-pack boriding time and temperature in AISI 
M2 steel was also proposed [27]. According to the di-
agram, when boriding at 1000oC for 4h, the estimated 
layers thicknesses are as follows: 28 um Fe2B and 17 

um FeB, which is in agreement with the obtained ex-
perimental results. 

 

Fig. 6 Cross-section of boride coating produced on X37Cr-
MoV5-1 (WCL) steel substrate. Paste-pack boriding in 

EKABOR-PASTE (a) and pack boriding in EKABOR-2 
(b): 1000oC, 4 hours 

 

 

Fig. 7 Cross-section of boride coating produced on HS 6-5-2 
(SW7M) steel substrate. Paste-pack boriding in EKABOR-

PASTE (a) and pack boriding in EKABOR-2 (b): 
1000oC, 4 hours 

 Microstructure of boride coatings on the sub-
strate of structural and stainless steels 

Both pack boriding of 18NiCrMo7-6 (17HNM) 
steel (Fig. 8b) and in paste (Fig. 8b) resulted in the for-
mation of a single-zone continuous Fe2B layer (83 um 
and 141 um thick, respectively), making these struc-
tures classified as model no. II [19, 58]. The borides 
formed have a branched shape. 

 

Fig. 8 Cross-section of a boride lcoating produced on a sub-
strate of 18NiCrMo7-6 (17HNM) steel. Paste-pack borid-

ing in EKABOR-PASTE (a) and pack boriding in 
EKABOR-2 (b): 1000oC, 4 hours 
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Powder-pack boriding of S355 steel (18G2A) re-
sulted in an outer, discontinuous FeB layer (5 um) and 
an inner, continuous Fe2B layer (Fig. 9b) with a slightly 
branched shape (88 um), which allowed this phase 
composition [58] and structure to be classified as 
model No. XI [19]. In contrast, the effect of Paste-
pack boriding (Fig. 9a) was the presence of only a dis-
continuous Fe2B boride layer (73 um) with a needle-
like morphology, so this structure was assigned to 
model no. IX [19]. 

 

Fig. 9 Cross-section of a boride coating produced on a sub-
strate of S355 steel (18G2A). Paste-pack boriding in 

EKABOR-PASTE (a) and pack boriding in EKABOR-2 
(b): 1000oC, 4 hours 

On the substrate of 16MnCr5 (16HG) steel, based 
on XRD phase analysis [58] and microscopic exami-
nation two-zone discontinuous FeB layer (4 um) and 
a continuous Fe2B layer (78 um) was formed by pack 
boriding (Fig. 10b), which is consistent with model no. 
XI of the classification used [19]. The resulting Fe2B 
borides have, characteristic of low carbon steel, a nee-
dle-like shape [19], which has been confirmed in the 
literature [44, 50]. Paste boriding (Fig. 10a) resulted in 
the formation of a discontinuous layer of Fe2B borides 
in the form of irregularly shaped precipitates (53 um), 
allowing this structure to be classified as consistent 
with model no. IX [19]. 

 

Fig. 10 Cross-section of a boride coating produced on a sub-
strate of 16MnCr5 (16HG) steel. Paste-pack boriding in 

EKABOR-PASTE (a) and pack boriding in EKABOR-2 
(b): 1000oC, 4 hours 

The pack boriding of 41CrAlMo7-10 (38HMJ) 
steel (Fig. 11b) resulted in two layers: an outer, discon-
tinuous FeB (6 um) and an inner, continuous Fe2B (86 
um), with a needle-like shape [58].  It was classified as 
structure no. XI [19]. The results obtained are in agree-
ment with those reported in [31], where 34CrAlMo5-
10 steel was subjected to BoropackTM pack boriding 

(1050oC/4h), identifying by XRD [58] analysis small 
separations of the FeB phase in some regions on the 
sample surface. BoropackTM pack boriding (Fig. 11a) 
resulted in the formation of an exclusively discontinu-
ous layer of columnar Fe2B boride precipitates (99 
um) perpendicular to the surface, which is character-
istic of the No. IX structure model [19]. 

 

Fig. 11 Cross-section of a boride coating produced on a sub-
strate of 41CrAlMo7-10 (38HMJ) steel. Paste-pack borid-

ing in EKABOR-PASTE (a) and pack boriding in 
EKABOR-2 (b): 1000oC, 4 hours 

Pack boriding in X12Cr13 (1H13) steel led to the 
formation of a two-zone boride coating (Fig. 12b) 
consisting of (based on XRD ref.  [58]): an outer, con-
tinuous FeB layer (19 um) in the shape of thin needles, 
and an inner, continuous Fe2B layer (41 um), below 
which there were separations of this phase, with a near 
globular shape.  This structure of the microstructure 
allows it to be classified as model no. I. Similar results 
were obtained by pack boriding in EKABOR-I on 
AISI 420 steel (900oC/2-6h). Dense coatings com-
posed of FeB + Fe2B borides with a total thickness of 
27 - 48 um were obtained [51].  On the other hand, in 
the study of the ref. [52], where pack boriding in 
EKABOR-II powder was applied to AISI 420 steel 
(950oC/5h), a layer composed of FeB and Fe2B bo-
rides with a total thickness of 51 um and a flat front 
was also found. The boriding process in the powder 
resulted in the formation of a single, continuous Fe2B 
layer (89 um) with an irregular shape, below which 
there were separations of this phase with a near glob-
ular shape, therefore this structure was classified as 
model no. II [19]. 

 

Fig. 12 Cross-section of boride coating produced on 
X12Cr13 (1H13) steel substrate. Paste-pack boriding in 

EKABOR-PASTE (a) and pack boriding in EKABOR-2 
(b): 1000oC, 4 hours 
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In the case of 34CrNiMo6 steel (34HNM), both 
pack boriding (Fig. 13b) and paste boriding (Fig. 13a) 
produced continuous Fe2B layers (XRD – ref. [58]) (77 
um and 134 um thick, respectively), so these structures 
were classified as model No. II [19]. The resulting lay-
ers had a distinctly needle-like morphology. Other re-
sults were obtained in paper [53], where pack boriding 
in EKABOR-II powder of this steel, at 850-950oC for 
6h, resulted in a characteristic coating composed of 
FeB borides (outer) and Fe2B (inner) with thicknesses 
ranging from 22 to 145 um. Also in ref. [54], boriding 
in EKABOR-II (950oC/6h), resulted in a two-phase, 
needle-like coating of FeB + Fe2B borides with a total 
thickness of 60 um. 

 

Fig. 13 Cross-section of a boride coating produced on a sub-
strate of 34CrNiMo6 (34HNM) steel. Paste-pack boriding 

in EKABOR-PASTE (a) and pack boriding in 
EKABOR-2 (b): 1000oC, 4 hours 

 Discussion 

Table 2 shows the classification of the boride coat-
ings obtained on the substrates of the studied steel 
grades. On the other hand, Figs. 14 - 15 shows the 
measured thicknesses of boride layers obtained by 
pack boriding and paste boriding. A clear effect of the 
content of alloying elements which favour the for-
mation of the FeB phase (i.e. Cr, Mo, W) on the thick-
ness and composition of the boride layers formed was 
observed. As their content in the steel increased, the 
thickness of the FeB borides increased, but the total 
thickness of the layers decreased, which was observed 
when comparing steels with similar carbon contents 
(SW7M and NMV) but with significantly different al-
loying element contents. These results are consistent 
with literature data [11,19]. Similar observations were 
made for NC11LV and NC10 steels (about 12 wt.% 
Cr each), for which boride layers were obtained with a 
total thickness lower than that produced on NC6 steel 
(about 1.5 wt.% Cr) by about 40 um. Due to the lower 
chromium content in the NC6 steel, FeB borides with 
non-uniform thicknesses were obtained. Furthermore, 
the Fe2B needles were thicker and more blunted, com-
pared to those produced on NC10 and NC11LV 
steels. Increasing the carbon content of the steel re-
sults in a decrease in the total thickness of the boride 

coating and a "smoothing" of the boride/substrate in-
terfacial boundary [10,11,18]. Comparing the obtained 
microstructures of boride coatings on substrates of 
steels with similar alloying element contents, i.e. 1H13 
and NC10, one can clearly see the effect of carbon on 
the morphology and thickness of the boride layers 
formed. Sharp, thin boride needles with a total thick-
ness of 60 um were obtained on the substrate of cor-
rosion-resistant steel 1H13 (ca. 0.1 wt.% C). On the 
other hand, on the substrate of cold work tool steel 
NC10 (approx. 1.65 wt. %.C), the resulting borides 
were blunted and branched, with a total thickness of 
45 um. A high carbon content (0.9 wt.%), with a low 
content of elements promoting the formation of the 
FeB phase, resulted in a discontinuous layer of FeB 
borides (e.g. NMV steel). Also, too low a carbon con-
tent, combined with an insufficient content of suitable 
alloying elements, prevented the formation of a con-
tinuous FeB phase in the surface layer of the borated 
steel (e.g. steel NZ3). In order to obtain a continuous, 
two-zone boride coating, consisting of an outer FeB 
phase layer and an inner Fe2B layer, an appropriate 
combination of carbon and alloying elements is re-
quired. Steels meeting these requirements, for which 
the results obtained are in agreement with the available 
literature, are: SW7M [4,20,27,49], NC11LV [45,46], 
NC10, 1H13 [51,52], WCL [47,48], NC6. In the case 
of the boriding of the other steels, comparable thick-
nesses of boride coatings consisting of Fe2B phase 
only (17HNM, 34HNM) or Fe2B phase and FeB is-
lands (16HG, 38HMJ, 18G2A) were obtained. Due to 
the insufficient content of alloying elements condu-
cive to the formation of a continuous FeB layer and 
too low carbon content, it was not possible to obtain 
on these steels the microstructure characterized as 
model no. I according to Voroshnin and Lyakhovich 
[19]. However, Fe2B boride layers with thicknesses 
much greater than those formed on tool steels and 
corrosion-resistant steels were obtained. 

In the case of boriding steels in EKABOR-
PASTE, a clear effect of carbon and alloying elements 
on the thickness and morphology of the boride coat-
ings formed was also observed (Fig.15). The coatings 
formed on steels with a low content of alloying ele-
ments and carbon (17HNM and 34HNM) were char-
acterised by a clearly needle-like body and the greatest 
thickness, equal to about 135 um. In contrast, boride 
layers with a flat front and a thickness not exceeding 
90 um were formed on the substrate of NC10, SW7M 
and 1H13 steels. This is a result of both the high al-
loying element and carbon content of these steels. No 
continuous Fe2B boride layer was formed on some 
steels (NZ3, S355, 16HG, 38HMJ), while no boride 
phases were observed on NC11LV. This is probably 
due to the application of an inadequate amount of 
paste, or its uneven distribution prior to the diffusion 
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boriding process. A higher porosity of the near-sur-
face zone of the boride coatings produced by the paste 
boriding process was also observed.  

The results obtained indicate that the boriding pro-
cess can be an alternative to the vacuum carburising 
[55, 56] and plasma nitriding [57] processes studied 

previously. At a further stage, it will be necessary to 
investigate the effect of boriding time on the micro-
structure and phase composition of boride coatings 
on the analysed steel grades [58-60]. As an alternative 
the duplex coating with plasma nitriding and PVD 
coatind deposition might be also considered [61]. 

 

Fig. 14 Average thickness of boride layers produced using EKABOR-2 powder on the steel grades tested 

 

Fig. 15 Average thickness of boride layers produced with EKABOR-PASTE paste on the steel grades tested 
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Tab. 2 Classification of the obtained boride layers produced on the substrates of the investigated steel grades using EKABOR-2 
powder and EKABOR-PASTE paste (1000oC/4h) according to Voroshnin and Lyakhovich (NC- discontinuous boride layer, C- 
continuous boride layer) [19]. 

Classification according to Voroshnin and Lyakhovich [19] 

Steel grade 

EKABOR-2 EKABOR-PASTE 

Structure 
model 

Structure components
Structure 

model 
Structure components

145Cr6 (NC6) I FeB (C) + Fe2B (C) II Fe2B (C) 
X165CrV12 (NC10) I FeB (C) + Fe2B (C) II Fe2B (C) 
X153CrMoV12 (NC11LV) I FeB (C) + Fe2B (C) - - 
90MnCrV8 (NMV) XI FeB (NC) + Fe2B (C) II Fe2B (C) 
60WCrV8 (NZ3) II Fe2B (C) IX Fe2B (NC) 
X37CrMoV5-1 (WCL) I FeB (C) + Fe2B (C) II Fe2B (C) 
HS6-5-2 (SW7M) IV Fe(B) IV Fe(B) 
18NiCrMo7-6 (17HNM) II Fe2B (C) II Fe2B (C) 
S355 (18G2A) XI FeB (NC) + Fe2B (C) IX Fe2B (NC) 
16MnCr5 (16HG) II Fe2B (C) IX Fe2B (NC) 
41CrAlMo7-10 (38HMJ) XI FeB (NC) + Fe2B (C) IX Fe2B (NC) 
X12Cr13 (1H13) I FeB (C) + Fe2B (C) II Fe2B (C) 
34CrNiMo6 (34HNM) II Fe2B (C) II Fe2B (C) 

 Conclusions 

 The type of boriding medium (pack, paste) 
and the content of alloying elements in the 
steel affect the thickness and morphology of 
the boride layers. 

 A high content of alloying elements increa-
sing the content of the FeB phase (Cr, Mo, 
W), results in an outer continuous layer of 
FeB borides. 

 As the content of alloying elements and car-
bon increases, the total thickness of the bo-
ride coatings decreases. 

 Chromium content below about 1%, with 
carbon content below about 0.4%, signifi-
cantly limits or prevents the formation of FeB 
phase. 

 Increasing content of alloying elements and 
carbon, results in a change in boride morpho-
logy according to the scheme: thin, sharply 
pointed needles thick, bluntly pointed needles 
branched needles flat boride/steel substrate 
interfacial boundary. 

 Higher porosity was observed in the near-sur-
face zone of boride coatings produced using 
EKABOR-PASTE paste. 

 Further studies are required to further inves-
tigate the boride coatings formed and to de-
termine their chemical and phase composi-
tion. 
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