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Nowadays, a lot of data is generated in production and also in the domain of assembly, from which 
different patterns can be extracted using machine learning methods with the support of data mining. 
With the help of the revealed patterns, the assembly operations and processes can be further optimized, 
thus the profit achieved can be increased. This article attempts to explore the patterns related to the most 
used Key Performance Indicator (KPI) in manufacturing, the Overall Equipment Effectiveness (OEE) 
metric. The patterns and relationships discovered will be sorted into Assembly Pattern Catalogue (APC). 
Firstly, a literature review demonstrates scientific relevance. Secondly, it examines the circumstances and 
methods of samples in the Manufacturing Execution System (MES) data source and Enterprise Resource 
Planning (ERP) systems. In the third section, the detailed pattern catalogue is defined in the area of 
assembly. The novelty of the article is that beyond the generalization of patterns, it characterizes the 
pattern catalogue with mentioning practical industrial examples. 
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 Introduction 

Recently, enormous data amount is generated in 
production and also in the domain of assembly. 
Applying Industry 4.0 (I4.0) and Internet of Things 
(IoT) technology, more and more real-time on-site 
data is collected from assembly lines [1]. The current 
IT systems connect to machines, workers and 
products [2]. In industrial practice, Manufacturing 
Execution System (MES) is one of the most common 
digital tools to collect data about the entire production 
system, including efficiency figures. This data 
collection is supported by various smart sensors, 
barcodes, vision systems and wireless technologies [3]. 
MES provides support amongst other data collection, 
performance analysis, product tracking, process 
management, machine control, material and 
production logistics [4]. This execution system is an 
industrial software and a bridge between Enterprise 
Resource Planning (ERP) and controlling systems (e. 
g., PLC) [5]. In the smart factories, MES serves ERP 
with operational information such as assembled units, 
performance data, downtimes and scrap rates [6]. 

One of the effective ways to process and evaluate 
the large amount of manufacturing and assembly data 
is the use of data mining and machine learning 
methods. Data mining is a step in a Knowledge 
Discovery in Database (KDD) process when patterns 
are extracted from historical data [7]. This process 

known as knowledge extraction, information 
discovery, data archeology and data pattern processing 
[8]. Machine learning algorithms as a part of data 
mining can be supervised, unsupervised and 
reinforcement learning. Several machine learning 
algorithms are used for analysis and prediction among 
others decision trees, clustering, Bayesian, regression, 
regularization, instance-based tools, ensemble 
methods, neural networks, and deep learning [9-13]. 
During machine learning one of the aims is to reveal 
different normal and abnormal patterns with 
computer power which a human brain not necessarily 
would have found [14, 15]. Although there are plenty 
of tools and software available, industrial companies 
are not using enough data mining and machine 
learning methods to identify hidden patterns in 
manufacturing data. In daily practice, this is especially 
true for the Key Performance Indicator (KPI) used in 
the field of assembly lines as well as for Overall 
Equipment Effectiveness (OEE) [16]. 

Assembly lines such as dedicated assembly lines, 
flexible assembly lines, reconfigurable assembly lines 
are become more and more complex in manufacturing 
industry in the domain of automotive, electronics and 
complex equipment manufacturing. In a turbulent 
market environment semi-automatic or hybrid 
assembly lines in mass production with flexibility and 
changeability is essential [17, 18]. Smart planning and 
manufacturing process monitoring are the part of 
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data-driven smart manufacturing. Data can be 
analysed by machine learning algorithms that identify 
the patterns of normal behaviour and identify unusual 
or risky events. [19]. During the entire optimization 
process several patterns can be found such as, material 
consumption patterns, energy consumption patterns 
and product relevant parameters (e. g., geometric, 
tolerance, machining parameters) [20, 21]. However, 
patterns have not been yet revealed in the case of 
OEE. This metric is an efficiency indicator that shows 
the difference between the ideal state and what has 
been achieved in reality. According to Nakajima the 
original formula for calculation Overall Equipment 
Effectiveness is written as:  

OEE = a p q (1) 
Where:  
a…Availability [%], 
p…Performance [%], 
q…Quality [%] [22]. 
A pattern is a local, usually complex structure in 

the dataset. At the domain of manufacturing, 
according to Ji et al. it is a big challenge to predict 
potential failures based on error patterns before the 
occurrence [23]. This can be a significant advantage 
for industrial companies. Based on another approach, 
manufacturing profiles as patterns are recording and 
applying in a proactive way for prediction, these 
profiles are saved as a probable environment 
behaviour. [24]. Bergman et al. for the tool failure 
pattern recognition used the following statistics during 
machine learning: count, mean, standard deviation, 
minimum, first quartile, median, third quartile, 
maximum, mode, maximum absolute step, maximum 
relative step, minimum absolute step, minimum 
relative step, value change, area under the curve and 
arc length [25]. Niedermann et al. optimized deep 
business automated processes and detected different 
patterns amongst other parallelization, decomposition 
and elimination [26]. The mentioned patterns with the 
connected processes were collected in a pattern 
catalogue. Pattern catalogue was defined as a 
consistent collection of patterns which mapped to a 
common formalism. Several business patterns were 
identified such as triage with clustering, automated 
decision with decision tree and resource selection with 
multiple regression [27]. 

This article focuses on the question: how OEE 
indicator patterns of the assembly lines can be 
described. The goal is to arrange the recognized 
patterns in Assembly Pattern Catalogue (APC) and to 
define the concept of the catalogue. 

 Material and methods 

Previously, during manufacturing process 
optimization, the Manufacturing Pattern Catalogue 
was defined as typical optimization option (e. g., best 

practices) [28]. However, the authors of this article 
understand that a pattern catalogue is not the same as 
good manufacturing practice. During the creation of 
the Assembly Pattern Catalogue, human (e. g., 
selection of machine error codes), assembly lines (e. 
g., process parameters) and products (e. g., number of 
assembled units based on barcode) provide data to the 
various systems. This is a huge amount of data that the 
human brain cannot process efficiently, therefore 
machine learning is necessary. Figure 1 shows the 
process of generating an Assembly Pattern Catalogue.  

 

Fig. 1 The process of making Assembly Pattern Catalogue 
 
The following primarily data sources were used 

during the recognition of assembly patterns for 
Overall Equipment Effectiveness: 

• Manufacturing Execution System (MES), 
contains relevant historical data of all 
production stages, OEE values and its 
contributor data (quantity, planned assembly 
time, downtime, scrap, etc.); 

• Enterprise Resource Planning (ERP), 
contains assembly batch data, planning data 
(e. g., assembly sequence); 

Secondary data sources: 
• SQL database, contains each product and 

process data, such as cycle time, product type, 
bottleneck workstation, etc.; 

• Log files, which are usually typical values of a 
workstation (e. g., failure code). 

Patterns can be explored from two perspectives, 
detected patterns and predicted patterns. The detected 
patterns refer to the present, showing a status on a 
historical basis, while the predicted patterns refer to 
the future, which contains uncertainty. The detected 
and predicted patterns show great similarity. In 
addition, it is advisable to focus on the bottleneck 
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workstation first when revealing the patterns.  
In order to interpret the Assembly Pattern 

Catalogue methodologically, it must be placed in a 

prediction model. This OEE prediction model is 
shown in Figure 2.

 

Fig. 2 OEE prediction model with Pattern Catalogue 
 
After defining the sample period, the model 

performs an analysis (descriptive statistics, 
significance, adjusted R2, etc.) using machine learning 
tools and then examines the generated prediction 
function to see if there is the same, similar or 
completely different. Accordingly, a new prediction 
function is generated, or the previous one is modified 
or discarded. The prediction function is recorded in 
the pattern catalogue together with the samples and 
revealed patterns. The predicted OEE values is 
compared with the real OEE values, then validation 
takes place, where the applied prediction function is 
reused (reinforcement), updated (correction) or 
discard (rejection) in the next cycle. The purpose of 
this article is to present the Assembly Pattern 
Catalogue rather than explain the prediction model in 
more detail.  

 Results and discussion 

In the field of assembly processes, patterns have 
not been revealed so far, much less compiled in any 

catalogue. Samples (from MES, ERP, SQL databases 
and log files), patterns and prediction functions (using 
machine learning tools) are available from the 
assembly lines, so these can be organized and stored 
in one structure, in Assembly Pattern Catalogue 
(APC). The schematic diagram of the Assembly 
Pattern Catalogue is shown in Figure 3. 

The three main elements of Assembly Pattern 
Catalogue are: 

• Samples (range of raw data, records that 
contain time series data); 

• Patterns (revealed local useful structure by 
machine learning); 

• Prediction functions (one or more 
mathematical function for prediction). 

There is a one-way or two-way connection 
between the individual elements, which is represented 
by arrows in Figure 3. During the exploration of 
OEE-relevant assembly patterns, the patterns related 
to its main components, such as availability patterns, 
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performance and quality patterns were prioritized. In 
addition to general descriptive statistics, these patterns 
were also partially explored by examining logical 

relationships. In the following, some discovered 
assembly patterns are detected and described that are 
affecting OEE values. 

 

Fig. 3 Elements of the Assembly Pattern Catalogue 
 
Availability patterns revealed by machine learning: 
• Typical periods of machine failures (e. g., start 

of assembly process, first shift); 

• Planned and unplanned downtimes 
distribution; 

• Effect of maintenance strategy (the time and 
duration of the planned activities). 

Performance patterns revealed by machine 
learning: 

• Human and machines performance ripple 
curve and cyclicity; 

• Recognition of normal pace and pulsation of 
the assembly operations; 

• Variable cycle times on critical stations and 
takt times on the assembly line; 

• Best of best values and circumstances; 

• Deviation from assembly technology (e. g., 
swapped assembly operations). 

Quality patterns revealed by machine learning: 
• Number of scrap units and scrap rate after 

type changes and/or machine failures; 

• Rejected pieces one after the other 

(workstation, failure code, series, etc.); 

• Appearance of visual failures on the products 
(e. g., place, form, etc.); 

• Revealed connection between SPC values and 
machines setup, adjustment. 

 Practical implementation of Assembly 
Pattern Catalogue 

One of the main goals of creating the Assembly 
Pattern Catalogue is to predict the OEE value as 
accurately as possible. This is difficult mainly because 
some of the assembly operations are stochastic and 
the prediction of technical errors is often uncertain, 
but machine learning can overcome. 

In this chapter, the previously presented Assembly 
Pattern Catalogue is applied in practice through a real 
industrial example. Data from the seat structure semi-
automatic assembly line of a European automotive 
company from the years 2021 and 2022 were used. 
The authors choose RStudio program as a machine 
learning environment to recognize the assembly 
patterns. The regression model used was MGCV 
(Mixed GAM Computation Vehicle) regression, 
where the data of 769 records were analysed. Figure 4 
shows the histogram of OEE values. 
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Fig. 4 Histogram of OEE values 
 

Each record covers one shift (eight hours) of data 
for a semi-automatic assembly line. The following 
independent variables were considered for regression: 
process failure downtime, break downtime, technical 
downtime, changeover downtime, quality reason 
downtime, logistics reason downtime, not planned 

downtime, other downtime reason, number of 
changeover, average cycle time, number of assembled 
units and number of scrap units. OEE, availability, 
performance and quality values are the dependent 
variables. Figure 5 shows the correlation matrix for the 
entire dataset. 

 

Fig. 5 Correlation matrix 
 

In the following, one prediction case is presented 
as an example together with their characteristics.  

The next settings were used during the case study: 
• Training set: 100-150 records (50 records), 

• Test set: 151-180 records (30 records). 

A detail of the descriptive statistics of the training 
set is shown in Table 1.  

The elements of the prediction function are the 
independent variables, whose parametric coefficients 
are shown in table 2. 
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Tab. 1 Descriptive statistics of the training set (detail) 
 Break 

downtime [s] 
Logistics reason 

downtime [s] 
Not planned 
downtime [s] 

Number of 
changeover 

Average cycle 
time [s] 

OEE 

Minimum 0 0 289 0 62.42 0.5645 
1st Quartile 1344 387 497.5 1 67.10 0.7008 
Median 1770 557 651 1 69.90 0.7357 
Mean 1562 683 754 1.549 70.77 0.7258 
3rd Quartile 1862 903 884 2 73.67 0.7607 
Maximum 2144 2316 2094 7 85.87 0.8082 

Tab. 2 Parametric coefficients 
 Estimate Std. Error t value Pr(>|t|) sig. 
Intercept 7.366e-01 6.805e-02 10.825 2.59e-13 *** 
other downtime reason 1.090e-04 1.304e-04 0.836 0.40831  
process failure downtime -1.598e-04 7.825e-05 -2.042 0.04800 * 
break downtime -1.804e-05 1.110e-05 -1.626 0.11208  
technical downtime -2.378e-05 1.086e-05 -2.190 0.03455 * 
changeover downtime -4.586e-05 2.200e-05 -2.084 0.04374 * 
quality reason downtime 0.000e+00 0.000e+00  -  -  
logistics reason downtime -2.360e-05 1.529e-05 -1.543 0.13081  
not planned downtime -6.710e-05 1.913e-05 -3.507 0.00116 ** 
number of changeover -9.535e-05 4.232e-03 -0.023 0.98214  
average cycle time 2.629e-05 3.825e-05 0.687 0.49590  
number of assembled units 2.794e-04 1.304e-04 2.143 0.03841 * 
number of scrap units -8.276e-03 4.040e-03 -2.049 0.04728 * 

Signif. codes: 0 ’***’ ; 0.001 ‘**’ ; 0.01 ‘*’ ; 0.05 ‘.’, 0.1 ‘ ‘; 1 
 
Based on Table 2, the significant factors in the 

examined period are process failure downtime, 
technical downtime, changeover downtime, not 
planned downtime, number of assembled units and 
number of scrap units. Figure 6 shows MGCV 
regression for OEE values where training set was 100-
150 and test set was 151-180. The blue line represents 
the predicted values and the red line represents the 
actual OEE values. 

 

Fig. 6 MGCV regression 
 
The accuracy of the prediction is 6.7398 according 

to MAPE (Mean Absolute Percentage Error), 0.0409 
according to MAE (Mean Absolute Error), 0.0030 
according to MSE (Mean Squared Error) and 0.0554 
according to RMSE (Root Mean Squared Error). 

Many patterns can be revealed during the analysis 
and prediction, which can be recorded in the pattern 
catalogue. Figure 7 and Figure 8 show examples of the 
revealed patterns. Figure 7 shows a scattered plot of 
the OEE values and assembled parts. Marked in blue, 
the assembly of two product types with different cycle 
times can be separated, and it can be seen that the 
OEE value is mostly around 0.8 (80%). The high 
OEE values in addition to the lower number of 
assembled units mean that the production did not take 
place in a full shift, but only in part. From the point of 
view of production planning, the assembly line should 
not be planned with 90% capacity and lower OEE 
values should also be considered. 

 

Fig. 7 OEE and assembled units scatter plot 
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Figure 8 shows a scattered plot of the OEE values 
and total downtimes. The green arrow indicates that a 
higher OEE value can be achieved with less 
downtime, but it is noticeable that in most cases there 
is about 2500 seconds (41.6 minutes) of downtime per 
shift, which is why a higher OEE value cannot be 
achieved. In addition to these, there are many cases 
where even higher downtimes occur. 

 

Fig. 8 OEE and total downtimes scatter plot 
 

Beyond these patterns, further patterns among 
others can be logical patterns, seasonality patterns, 
trends and extreme values. It is important to examine 
the appearance conditions, frequency, length, priority, 
occasional characteristics and abnormality of the 
patterns. 

 Conclusions 

In industry, it is crucial to monitor and improve 
assembly performance based on the patterns revealed 
by machine learning. This article focused on how 
OEE indicator patterns of the assembly lines can be 
described. These recognized patterns supported by 
data of Manufacturing Execution System (MES), 
Enterprise Resource Planning (ERP), different 
databases and log files. The samples, patterns and 
prediction functions were organized and stored in one 
structure named Assembly Pattern Catalogue (APC). 
During exploration of OEE-relevant assembly 
patterns, the main components of this metrics such as 
availability, performance and quality were prioritized.  

This paper presented a model which includes APC 
to predict assembly efficiency by Mixed GAM 
Computation Vehicle) regression as supervised 
machine learning. Histogram of OEE values, 
correlation matrix, descriptive statistics, parametric 
coefficients, regression and scatter plots were 
presented to illustrate the practical usability at an 
automotive company. By creating and using the 
systematic Assembly Pattern Catalogue, more accurate 
and faster production and capacity planning can be 
achieved. With the continuous expansion of APC, 
more and more patterns are becoming known, by 

taking them into account, production and assembly 
can become more balanced. A further research 
direction could be the exploration of additional 
patterns in the case of other production or logistics 
metrics such as OTDP (On Time Delivery 
Performance). 
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