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Combinatorial explosion and limited efficiency when solving complex products with multiple parts are 
two issues that traditional assembly sequence solution methods frequently run into. To improve the level 
of assembly sequence planning (ASP), an interference matrix is constructed to convey the fundamental 
assembly information of a product. Taking the stability of the assembly sequence, the number of 
assembly direction changes, and the number of assembly tool changes as evaluation indicators, a fitness 
function is constructed. On the basis of the unique characteristics of the ASP problem, an improved 
particle swarm optimization (IPSO) approach is devised. Redefining particle positions, velocities, and 
their update operations, and introducing mutation operators in genetic algorithm (GA) to improve the 
ability of PSO algorithms to jump out of local optima. Additionally, the algorithm's convergence speed 
is enhanced by adjusting the value of the inertia weight. Finally, an example is provided to demonstrate 
the IPSO algorithm's usefulness and efficiency. 
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 Introduction 

Efficiency and cost of the product assembly 
process are the key factors to increasing the 
competitiveness in the manufacturing sector. 
According to statistics, the cost of assembly makes up 
more than 40% of the production cost, and the 
workload for assembly makes up 20% to 70% of the 
overall labor required to manufacture a product [1]. As 
the core of assembly planning, the quality of ASP is 
directly related to the assembly cost of products. A 
suitable assembly sequence might help to save 
assembly time and workload, thus providing higher 
productivity and improving product assembly quality 
[2]. As the number of product parts and components 
increases, the conceivable assembly sequence also 
increases exponentially [3-5]. Engineers need to spend 
a lot of time determining their assembly sequence. 
Because traditional empirical design is difficult to 
ensure the correctness and consistency of ASP, the 
optimal assembly sequence is easily overlooked in the 
design process. To reduce the negative impact of 
assembly sequence in the process of assembly, it is 
vital to optimize and study the ASP problem in the 
process of product assembly and provide a support 
for the feasibility and optimality of the product in the 
real assembly process. 

In recent years, using the intelligent assembly 
method to solve ASP problem has gained a lot of 
attention in the field of assembly process planning. 
Many scholars have studied ASP problem via different 

intelligent methods. Such as GA, ant colony 
optimization (ACO), PSO, and simulated annealing 
algorithm (SA) provide powerful methods for solving 
assembly sequences of complex products. As an 
illustration, Wang et al. [6] solve the ASP problem in 
the assembly of antenna reflectors by GA. Mishra et 
al. [7] introduced an intelligent assembly sequence 
optimization approach based on the flower pollination 
algorithm (FPA), which automatically generates 
multiple feasible assembly sequences by minimizing 
the number of direction changes and tool changes 
under various priority constraints. Wu et al. [8] 
completed the ASP of eccentric milling machine using 
PSO algorithm. In order to improve the global search 
ability of genetic algorithms, Li et al. [9] adopted a new 
coding method to optimize the ASP of satellite partial 
structures. Bala et al. [10] proposed a new hybrid 
artificial intelligence technology, which combines GA 
to realize artificial immune system (AIS), so as to find 
an optimal and feasible algorithm to extract assembly 
sequences from possible assembly sequences. Gunji et 
al. [11] sugguested an assembly sub-detection 
approach based on teaching learning based 
optimization algrithm to optimize robot ASP. 

GA is a meta heuristic method that imitates the 
principle of natural selection [12]. Due to its global 
search and gradient information independent 
optimization capabilities, it has been widely used in 
many combinatorial optimization problems [13,14], 
including ASP problems [15-19] because of its global 
search and gradient information independent  
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optimization ability. However, the GA is highly 
dependent on the quality and size of the initial 
population, which necessitatess a large proportion of 
feasible assembly sequences in the initial population. 
The feasible assembly sequences need to be set 
manually, which takes a lot of time. Inappropriate 
assembly sequences in the initial population may often 
lead the search process to evolve in the direction of 
poor, and ultimately may not get the optimal assembly 
sequence, or even may not converge. Simulated 
annealing algorithm can solve some nonlinear 
problems and obtain the optimal solution with a high 
probability [3], which has defect that the global search 
ability is poor. When a product has a large number of 
parts to assemble, the algrithm can only obtain an 
approximate solution. PSO originates from the study 
of bird predation behavior [15]. Compared with GA, 
its convergence speed is faster and has a memory 
function, but it is easy to fall into local optimization 
[16,20]. The immune algorithm [12] is a relatively new 
algorithm in the field of intelligent algorithms, which 
has numerous issues in system modeling and other 
areas. 

In order to solve the ASP problem of complex 
products, an IPSO algorithm is proposed to solve the 
above problems by setting the objective function 
based on the reorientation times of parts, the number 
of assembly tool switching, and the assembly stability 
in the assembly process. The IPSO algorithm solves 
the problem that the PSO algorithm is easy to fall into 
the local optimum. The algorithm is verified and 
analyzed by an example. The verification results show 
that the algorithm can effectively solve the ASP 
problem of complex products. 

The rest of this paper is organized as follows. In 
section 2, we analyze the assembly sequence problem. 
In section 3, we propose an improved particle swarm 
optimization algorithm and problem-solving method. 
Section 4 verifies the rationality of the model theory 
and the effectiveness of the algorithm through case 
studies. Finally, we put forward the conclusions with 
limitations and describe the future work in section 5. 

 Analysis of assembly sequence problems 

 Interference matrix 

An effective assembly sequence must first satisfy 
the geometric constraints of the assembly. According 
to the interference matrix of all parts in the product to 
be assembled in each assembly direction, the feasible 
assembly sequence of parts p¯  and parts p¶  without 
interference can be found. The interference matrix is 
used to judge the geometric feasibility of the parts in 
the product in each assembly direction. Generally, the 
interference matrix is established according to the six 
directions of space âO, âR, â¦ . Assuming that the 
assembly model is composed of n parts, the 
interference matrix can be expressed as: 

 D^ = SD¯¶¥T¿×¿                        (1) 

Where: D¯¶¥  represents the interference between 
part p¶ and part p¯ when it is assembled along the k 
direction, which is one of the âO, âR, â¦ directions. 
The value of D¯¶¥ can be expressed as: 

 D¯¶¥ = ã0, When p¯ is assembled along s direction without interference with p¶1,    When p¯ is assembled along the s direction and interferes with p¶  (2) 

If the sequence 8§ = Sp�, p�, ⋯ , p¯��T  is the 
assembled part sequence and p¯  is the part to be 
assembled, the feasible assembly direction of the part p¯ can be determined by the following formula (3). k = ∑ D¯¶¥¯��¶·�                           (3) 

K is the six directions of the Cartesian axis. Judge 
the assembly interference of the parts in each 
direction. If the formula is 0, it means that the parts p¯ 
are assembled in this direction without interference. If 
the formula is not 0, interference will occur and this 
assembly sequence is not feasible. 

 Fitness function 

In the assembly process of complex products, an 
excellent assembly sequence should have lower 
assembly cost, shorter assembly time, and higher 
assembly quality. Therefore, according to the features 
of product assembly, the evaluation index and 

objective function of the assembly sequence are 
defined, which are constituted of the assembly tool 
changes times, the assembly direction changes times, 
and the assembly stability. Among them, assembly 
stability directly affects assembly quality, and the 
assembly direction change times and the assembly 
tools change times affect the assembly time and 
assembly cost. 

1) Stability of assembly sequence. In order to 
increase the stability and reliability of the assembly, we 
need to establish a contact matrix to guarantee the 
normal operation of the assembly process [1]. Set the 
stability parameter as =¯¶, and the stability judgment 
rule of the assembly sequence: set  8§ = Sp�, p�, ⋯ , p¯��T  as the assembled part 
sequence and the parts p¯ to be assembled. If the two 
parts are in direct contact and maintain a stable 
connection relationship =¯¶ = 1, if the two parts are 
only in direct contact =¯¶ = 0.4, and if the two parts  
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are not connected, then =¯¶ = 0. The overall assembly 
stability of the product is: 3ñ = ∑ =¯¶¿̄·�                            (4) 

2) Assembly direction change times. If the 
direction of assembly changes too frequently, it will 
greatly increase the cost and difficulty of assembly, so 
we need to minimize the amount of redirection of 
assembly. Set the direction change parameter as 6¯¶. 
If the direction of two parts does not change, then 6¯¶ = 0, otherwise 6¯¶ = 1. 

For any feasible assembly sequence Sp�, p�, ⋯ , p¿T, the solution steps for the assembly 
direction changes times Vd of this assembly sequence 
are as follows. 

• (1) Let i=0, Vd=0. 

• (2) Then when assembling parts Pi+1, the 
assembly direction needs to be changed to 
make Vd=Vd+1, otherwise, Vd = Vd; Skip to 
step (3); 

• (3) Let i=i+1, if i+1<n, repeat step (2); 
Otherwise, skip to step (4). 

• (4) End. 
Obviously, the smaller the Vd, the smaller the 

assembly direction changes times and the lower the 
assembly cost. 

Assembly tools change times. Each part has an 
assembly tool. If different assembly tools are used for 
assembling several parts in succession, the assembly 
cost will also increase. Set the continuity parameter as 5̄ ¶ . If the two-part assembly tool does not change, 5̄ ¶=0, otherwise 5̄ ¶=1. 

For any feasible assembly sequence Sp�, p�, ⋯ , p¿T , the solving steps of assembly tool 
change times Vt of this assembly sequence are similar 
to those of assembly direction change times. 

Therefore, the fitness function values are 
constructed as follows: 

Max   ò = ó� ∗ 3ñ/Só� ∗ 3B + ó� ∗ 3­)     (5) 

 Operation steps of IPSO algorithm 

 Definition of PSO algorithm considering 
assembly sequence planning 

PSO algorithm is mainly used for optimization of 

continuous functions. In order to enable PSO 
algorithm to be applied to models established in 
discrete space, the location, speed, and update 
operations of particles are redefined based on the 
characteristics of ASP models. 

Definition 1: The position of particles. The 
position vector of the ith particle is expressed as §¯ = Sp�̄, p�̄, ⋯ , p¿̄T, indicating that the assembly is 
performed in the order of p�̄, p�̄, ⋯ , p¿̄, and n is the 
number of parts of the product. 

Definition 2: particle speed. The velocity vector of 
the ith particle is expressed as  3¯ = S��̄, ��̄, ⋯ , �¿��¯ T. The function of the speed 
operator 3SE,QT is to exchange the position of the x-th 
part and the y-th part in the assembly sequence to 
generate a new assembly sequence. 

Definition 3: Addition of position and speed. The 
result of a particle's position vector plus its velocity 
vector is a new position vector. The formula is 
expressed as §¯W� = §¯+3¯. 

Definition 4: Subtraction between positions. The 
result of subtracting two position vectors is a velocity 
vector.  

Set §º = Sp�º, p�º, ⋯ , p¿ºT,  §¥ = Sp�¥ , p�¥ , ⋯ , p¿¥T. §º − §¥ = 3Sº,¥T=(��Sº,¥T, ��Sº,¥T, ⋯ , ��Sº,¥T). 
Definition 5: Multiplication of speed. Let the 

velocity vector of a particle be  3� = S���, ���, ⋯ , �¿��� T  and the coefficient c,  n ∈ [0,1] . Define the number of multiplication of 
velocity vector and coefficient as 
 3� = n ∗ 3� = S���, ���, ⋯ , �¿��� T . Take values 3� 
according to the following rules: �h2 = ⎩⎨

⎧�h2   � ÷n0    � ø n                             (6) 

Where r is a random number evenly distributed 
between 0 and 1. 

Definition 6: Addition of speed. The result of the 
addition of two velocity vectors is a new velocity 
vector. In order to facilitate calculation, the velocity 
vector is not directly added, but added with the 
particle position vector in order, and then subtracted 
with the new and old position vectors to obtain the 
desired velocity. 

Through the above redefinition, the particle 
position and velocity update formula applicable to 
solving the ASP problem of discrete space model is: 

  3s+1 = ó∗3s + ùún1 ∗r;li�−§sû + ún2 ∗p;li�−§sûü                         (7) 

§s+1 = §s + 3s+1
                                    (8) 

 Algorithm improvement and implementation 
steps 

IPSO algorithm can improve the local search effect 

by adding mutation operator; On the other hand, it 
can maintain the individual differences of the 
population, prevent the occurrence of premature 
convergence, and increase the probability of the 
particle finally converging to the global  
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optimal solution. 
(1) Particle initialization. The solution of ASP is a 

feasible assembly sequence matrix AS, which is 
composed of assembly part sequence AP, assembly 
direction sequence AD and assembly tool sequence 
AT. Random initialization generates AP sequence, 
which determines the optimal AD and AT sequence. 

(2) Initial fitness calculation. According to formula 
(4), the fitness function value of each particle can be 
directly calculated, and the initial individual optimal 
sequence and the initial global optimal sequence can 
be determined. 

(3) Inertia weight calculation. Inertia weight is 
taken according to formula (9): ó = j ∗ =B­ + q                       (9) 

Where ó ∈ [0,1], in this paper, m=0.6，n=0.3, 
and =B­  are the target distance factors, which are 
taken according to the following formula (10): 

=>� =
⎩⎪⎨
⎪⎧ 1, `r
 ÷ `>

þ`r
 −`>þ `>� ,l�il                 (10) 

Where �̀�  is the fitness function value of the 
currently found global optimal assembly sequence, 
and B̀  is the expected fitness function value of the 
global optimal assembly sequence. 

(4) Particle update. The assembly part sequence AP 
is updated according to formula (5) and formula (6), 
while the assembly direction sequence AD and 
assembly tool sequence AT are obtained from the 
updated AP sequence. The AD and AT sequences are 
the optimal sequence of the updated AP sequence. 

(5) Adaptability update. The fitness value of 
particle swarm is updated by formula (4), and the 
individual optimal sequence and global optimal 
sequence of each particle are updated. 

(6) Renewal of diversity factors. The standard 
deviation of the population fitness value is used as the 
index to measure the population diversity, which is 
taken according to the following formula (11): 

σ = ��¿ ∑ S`̄ − ÌT�¿̄·�                   (11) 

Where n is the number of particles in the particle 
swarm, the fitness of the ith particle, and the average 
fitness of the particle swarm: `m = ∑ `hqh=1 qu                           (12) 

(7) Variation. In order to avoid precocity, a 
mutation operator is introduced to make the current 
global optimal assembly part sequence gBest mutate. 
The mutation probability (* *) is calculated as follows: 

pj = �s,�ø�>,`>
 ÷ `>, h��gq0,l�il        (13) 

Among them, s ∈ [0.1,0.3] and �B are the critical 
standard deviation of population convergence, and 
their values are related to the actual problem, generally 
far less than the maximum value of � , B̀  is the 
expected optimal fitness, i is the current iteration 
number, and run is the maximum iteration number. 
When the above mutation conditions are met and 
�̀� ÷ nc  is met, the new population randomly 

generated will replace the old population. 
(8) If h ø �gq , go to step 3; Otherwise, go to  

step 9. 
(9) Output the best sequence gBest found. 

 Comparative analysis of examples 

 ASP test based on IPSO algorithm 

In order to validate the proposed assembly 
planning algorithm, a product assembly planning 
oriented to part assembly features was constructed 
based on Matlab. We select a robotic arm as the object 
of analysis. The view of the robotic arm assembly is 
shown in Fig.1, and the assembly tool and direction 
for each component of the assembly is shown in  
Tab. 1. 

 

Fig. 1 Structural Diagram of the Mechanical Arm 

Tab. 1 Assembly Tools and Orientation of Parts 

No. Direction Tool 
1 y,z T3 
2 x,–x T2 
3 y,z T2,T3 
4 x,y T2 
5 z,-x T2 
6 y T2 
7 –x T2 
8 –x T2 
9 y,z T2 
10 y,z T2,T3 
11 y T1 
12 y T1 
13 x,y T2 
14 y,z T2 
15 x,y,z T2 
16 x,z T2 
17 x,y T1 
18 x,z T2 
19 y,z T2,T3 
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Three algorithms are used to optimize the above 
problems. Tab.2 shows the allocation results obtained 
by the three algorithms. For example, the assembly 
sequence scheme obtained by GA is 
1→3→19→6→10→16→2→4→18→13→15→17
→12→11→5→9→14→7→8. According to this 
scheme, the assembly direction change times is 4, the 
assembly tool change times is 3, and the assembly 

stability value is 16.6. Its fitness function value is 2.37. 
The fitness function values of PSO and IPSO are 2.87 
and 2.97, respectively, which are superior to the GA 
optimization scheme. It can be seen from Tab.1 that 
IPSO has achieved optimal results in terms of 
assembly stability, assembly direction change times, 
and assembly tool change times.

Tab. 2 ASP Scheme Obtained by Three Algorithms 

Assembly Information 

No. Direction Tool No. Direction Tool No. Direction Tool 
1 y T3 1 z T3 1 z T3 
3 y T3 19 z T3 3 z T3 
19 y T3 10 z T3 19 z T3 
6 y T2 16 z T2 5 z T2 
10 y T2 3 z T2 10 z T2 
16 x T2 18 x T2 9 z T2 
2 x T2 6 y T2 18 z T2 
4 x T2 11 y T1 16 x T2 
18 x T2 17 y T1 2 x T2 
13 x T2 12 y T1 13 x T2 
15 x T2 13 y T2 4 x T2 
17 x T1 14 y T2 14 y T2 
12 y T1 4 y T2 6 y T2 
11 y T1 15 y T2 17 y T1 
5 z T2 9 y T2 11 y T1 
9 z T2 2 –x T2 12 y T1 
14 z T2 7 –x T2 15 y T2 
7 –x T2 5 –x T2 7 –x T2 
8 –x T2 8 –x T2 8 –x T2 

Direction Change Times 4 3 3 
Tool Change Times 3 3 3 

Stability Value 16.6 17.2 17.8 
Fitness Function Value 2.37 2.87 2.97 

Execution Time 0.35 0.26 0.25 

 Comparative analysis of IPSO, GA and PSO 

In order to verify the effectiveness and superiority 
of the IPSO algorithm, the IPSO algorithm is 
compared with the GA and PSO algorithms, which 
are widely used in the field of ASP. The fitness 
function and the weight coefficient of each evaluation 
index remain unchanged. The application program is 
also written in Matlab, and the program running 
environment remains unchanged. 

The comparison of test results of the IPSO, PSO, 

and GA are shown in Tab.3. It can be seen from Tab.3 
that in bigger population sizes, these three algorithms 
can produce more feasible assembly sequences. 
However, when the population size is small, GA will 
get fewer feasible assembly sequences, and the 
population size is positively connected with the 
number of feasible sequences. Furthemore, the IPSO 
algorithm finds much more global optimal solutions 
than PSO, indicating that the IPSO method has the 
strongest ability to find global optimal solutions.

Tab. 3 Comparison of Experimental Results of Three Algorithms 

 GA PSO IPSO 

Population 20 50 100 200 20 50 100 200 20 50 100 200 

Iterations 100 100 100 100 100 100 100 100 100 100 100 100 

Number of Runs 30 30 30 30 30 30 30 30 30 30 30 30 

Number of Feasible 
Assembly Sequences 6 19 36 62 22 46 65 65 42 65 65 65 

Optimal Fitness Func-
tion Value 

1.68 2.14 2.37 2.97 1.81 2.64 2.87 2.97 1.78 2.92 2.97 2.97 
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IPSO and PSO identify better optimal assembly 
sequences than GA with the same population size. 
When the population size is less than 200, GA has 
never identified the global optimal solution, while 
PSO and IPSO can find it effectively. In addition, with 
the same population capacity, the IPSO's running time 
is substantially shorter than that of the GA. It is clear 
that the IPSO outperforms the GA in terms of 
performance and efficiency. 

 

Fig. 2 Average value of optimal fitness of three algorithms 

In order to validate the effectiveness and 
superiority of the IPSO, several experiments were 
carried out to compare the IPSO with GA and PSO. 
Fig. 2 depicts how the average optimal function value 
changes as the number of iterations rises. It can be 
seen from Fig. 2 that GA has a slower search speed 
and require a longer algebra to locate the ideal answer. 
Compared to PSO and GA, IPSO can identity the 
optimal solution in a relatively short time, and the 
shortest path searched by IPSO is better than GA. The 
IPSO, on the other hand, can yield greater results. 

Take the standard deviation of the fitness function 
value as an indicator to measure population diversity, 
and compare the change of the mean standard 
deviation of the fitness function value of the three 
algorithms with the increase in the number of 
iterations. The comparison curve of population 
diversity of the three algorithms is shown in Fig. 3 
when the population size is 100 and the number of 
iterations is 50. 

 

Fig. 3 Comparison of population diversity 

As can be seen from Fig. 3, the diversity of GA has 
not changed significantly, which indicates that its 
convergence pace is modest. In the initial iteration 
stage of the algorithm, IPSO can achieve a faster 
convergence rate than PSO, but in the later iteration 
stage, it fluctuates greatly due to the addition of a 
mutation factor to the IPSO algorithm. When a 
population falls into a local optimum, the mutation 
mechanism of the population can improve the 
diversity of the population, thereby increasing the 
probability of the algorithm converging to the global 
optimal solution. From a global perspective, the 
population diversity of IPSO and PSO algorithms has 
steadily decreased. 

 Conclusion 

In this paper, an interference matrix is used to 
describe information such as a product's viable 
assembly orientation. On this basis, objective 
optimization functions are established from assembly 
stability, the quantity of changes in assembly direction, 
and the quantity of changes in assembly tools to solve 
the assembly sequence. 

Based on the fundamental PSO algorithm, the 
particle position, velocity, and their update operations 
are redefined. The mutation operator in GA is 
introduced to improve the ability of the algorithm to 
jump out of the local optimum, and an ASP method 
based on IPSO is proposed. According to the 
simulation results, this method has an advantage over 
GA and basic PSO in that it converges quickly, has 
significant optimization capabilities, and can 
successfully avoid approaching the local optimal 
solution. It can better search the optimal assembly 
sequence and effectively improve the efficiency and 
quality of product ASP. 
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