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The electrochemical discharge machining (ECDM) process is developing into a potentially useful 
method of performing machining in conductive or non-conductive materials. The experiment was 
conducted utilizing full factorial design (24) with the 16 run test. The present study implemented artificial 
neural network (ANN) and particle swarm optimization (PSO) techniques to predict the Material 
Removal Rate (MRR) and surface roughness (SR), and the linear regression analysis were utilized for 
this purpose.  The input parameters were adjusted with the objective of maximizing the MRR and 
minimizing the SR. The four selected process parameters are voltage, gap width, electrode type, and type 
of electrolyte, with each parameter has two levels, copper and brass were chosen as the electrodes in this 
particular technique. Linear regression (LR) modelling was calculated for comparison between the ANN 
model and LR. Artificial neural network (ANN) models have been developed to accurately predict SR 
and MRR, achieving a prediction accuracy of over 90%. The impacts of these findings have great 
significance for the future of machining tungsten carbide utilizing ECDM. Based on the results of R2, 
the modelling with ANN is closer to the actual value than the prediction using a linear regression model, 
the value of R2 ANN greater than LR so that the prediction model of ANN is still the best model. 
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 Introduction 

Electrochemical discharge machining (ECDM) is 
an innovative manufacturing technique that integrates 
the principles of electrochemical machining (ECM) 
and electrical discharge machining (EDM). This 
advanced method enables the precise fabrication of 
micro-scale components, including micro holes, 
microchannels, micro grooves, and intricate three-
dimensional structures, in conductive and non-
conductive materials. ECDM, an abbreviation for 
electrochemical discharge machining and electrical 
discharge machining, offers tremendous potential for 
enhancing the manufacturing process in various 
industries and has become a focal point of research 
and development [1–3]. Electrochemical discharge 
machining (ECDM) is a highly versatile 
manufacturing technique that enables the precise 
machining of a wide range of materials, including 
metals, superalloys, ceramics, glasses, and composites. 
These materials, characterized by their rigidity, 
delicacy, conductivity, and non-conductivity, can be 
intricately shaped using ECDM. This cutting-edge 

method operates by leveraging the phenomenon of 
electrochemical discharge that occurs near an 
electrode. With its ability to achieve exceptional 
precision and control, ECDM has emerged as a 
significant area of focus in research and development 
for various industries. In this process, a small tool 
electrode is employed to carry out the machining 
operations. In ECDM, each electrode is partially 
submerged in a suitable electrolyte solution. A holder 
is used to clamp the workpiece, and then the 
workpiece is positioned such that it is below the tool 
electrode. The tool electrode is then placed in an area 
where it is only partially submerged in the electrolyte. 
Due to the size disparity between the tool and auxiliary 
electrodes, the auxiliary electrode is often substantially 
more significant than the tool electrode. The 
introduction of a direct current supply voltage to both 
electrodes caused a change in dimension, which 
ultimately results in the production of a potential gap 
between the two electrodes. This difference in 
potential is the critical component that kickstarts the 
electrolysis process and causes the reaction. When the 
voltage between the tool electrode and the workpiece  
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is higher than a predetermined critical voltage, the 
electric discharge will occur [4]. 

Multiple parameters affect the complexity of the 
machining process while using ECDM. Numerous 
research studies carried out the ECDM process 
characteristics. The ECDM process is a complex 
process that generates many process parameters, and 
it plays an essential role in the quality characteristics of 
ECDM machining. It focuses on the type of material, 
electrolyte fluid, machining quality, electrode 
characteristics, and gas film formation [5]. Voltage [6], 
the tool gap electrodes [7], pulse duty cycle [8], a 
current signal [9], polarity [10], feed rate, tool material, 
electrolyte properties[10, 11] are have been 
investigated for their influence on response in the 
ECDM process to obtain the optimum response. The 
quality characteristics studied focused on surface 
roughness [12, 13], material removal rate (MRR) [14], 
tool wear ratio [3], and overcut [15].  

Jawalkar et [16] al studied the different electrolyte 
NaOH and NaCl in enhancing metal removal rate. 
The researcher observed a significant disparity in the 
rate of material extraction between NaCl and NaOH, 
with NaCl exhibiting a notably slower rate compared 
to NaOH, as revealed by the study’s findings. 
Furthermore, during the research, it was observed that 
elevating the voltage to 70 volts and augmenting the 
electrolyte concentration to 22% resulted in a higher 
material removal rate when employing NaCl solution 
as compared to NaOH solution. This significant 
finding underscores the influence of voltage and 
electrolyte concentration on the effectiveness of 
material removal during the experimentation The tool 
electrode was made of stainless steel. Achieving the 
best quality targets in ECDM process is quite 
challenging due to the complexity it has. Therefore, it 
is necessary to determine the appropriate parameter 
combination settings through experiments with 
optimization methods. An experimental study using 
the Taguchi method was carried out on the ECDM 
process of soda-lime glass material; the responses 
studied were tool wear and MRR [17–19]. The 
electrodes used are copper and stainless steel and 
NaOH electrolyte. The experiment was carried out 
based on the L4 orthogonal array. Experimentally, all 
the selected parameters were significant, and the wear 
of the copper tool was higher than that of stainless 
steel. Antil et al. [20] have predicted and optimized the 
MRR and taper of the SiC (silicon carbide) using full 
factorial design and a neural network-based hybrid 
model. Regression analysis and artificial neural 
network (ANN) have been recommended by a 
researcher [21] to predict the MRR of Soda-lime glass. 
Demonstrate a harmonious alignment between the 
experimental outcomes and the projected model. 
Notably, artificial neural network (ANN) models have 
been extensively employed in assessing the impact of 

diverse machining parameters in different non-
conventional machining methods and in predicting 
optimal process parameter values or predicting 
process performance measures. This substantiates the 
widespread use and versatility of ANN models in 
predicting  and optimizing various aspects of 
machining processes [22–27] .  

The utilisation of predictive techniques in the 
modelling and optimising parameters in modern 
machining processes has emerged as a significant 
milestone for the manufacturing industries. This 
development signifies a pivotal advancement in the 
field, allowing for the precise and efficient 
determination of optimal process parameters. By 
employing these sophisticated optimisation 
techniques, manufacturing industries can enhance 
their productivity, quality, and overall operational 
performance. This breakthrough holds tremendous 
potential for revolutionising manufacturing practices 
and driving substantial improvements in the efficiency 
and effectiveness of machining processes. As a result, 
numerous researchers are attempting to make use of 
these advanced optimization techniques for a variety 
of different processes [28]. Several researchers have 
used various optimization methods, such as Taguchi's 
methodology [7], response surface methodology [8], 
artificial neural network [9] and grey relational analysis 
[10], genetic algorithm [29, 30], particle swarm 
optimization [31, 32], etc., to optimize the machining 
processes for single and multi-response.  

The demand for the manufacture of tungsten 
carbide products is a challenge due to its high strength. 
Many metal compounds are used in industry, but none 
of the materials has tungsten carbide's unique 
properties. The combination of carbon and tungsten 
elements produces a super hard metal alloy similar to 
diamond that has resistance to heat, friction, scratches, 
corrosion, and high fatigue [33]. Tungsten carbide is 
recently used as a cutting tool for turning and milling 
processes, dies production, and mould maker. The use 
of tungsten carbide is not limited only to the 
manufacturing industry but also to the medical 
components, such as surgical instruments and 
implants. The hardness of tungsten carbide is two 
times greater than the hardness of steel, and since 
tungsten carbide is typically difficult-to-cut material, it 
isn't easy to be machined. Innovation in metal cutting 
processes such as hybrid manufacturing-based 
technology is independent of the hardness of the 
workpiece [34, 35]. This technology is an innovation 
to reduce machining costs, increase machining speed, 
quality and capability to manufacture complex shapes 
of various components that traditional machining 
cannot produce economically [36]. The 
unconventional machining process is more promising 
due to its versatility and controlled parameters, and 
most of the techniques use thermal energy for its  
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mechanism [37]. This present study aims to investigate 
the parameters of the ECDM process of tungsten 
carbide (WC) to achieve minimum surface roughness 
and maximum surface roughness. The full factorial 
design chosen as an experimental design and 
predicting modelling using ANN was used to 
determine the minimum surface roughness. 

 Materials and Methods 

 Equipment of Experimentation 

Experiments performed on the fabricated ECDM 
prototype model include various components, 
consisting of machining control based on the Arduino 
system, a single Z-axis linear motion to feed the tool, 
spindle, a fixture for the workpiece, an acrylic material 
as an electrolyte chamber, a circulation pump 
electrolyte immerse, and electrical system with DC 
power. Tungsten carbide (WC) dimensions 19 mm x 
17 mm with 4 mm thickness as an anode workpiece. 
Two types of cylindrical cathode tools used were 
copper and brass with a diameter of 13 mm and had 
80 mm in length, and an auxiliary anode was stainless 
steel. The experimental setup shows in Fig. 1. The 
condition of the machining is shown in Table 1. 

Tab. 1 The experimental machining condition 

Machine Fabricated prototype ECDM 
Set-up 

A voltage of DC 
supply 0-120 V 

Current 0-15 A 

Cathode tool Copper and Brass 

Auxiliary electrode Stainless steel (L-100 mm) 
Electrolyte and 
concentration NaCl and NaNO3 

Anode workpiece Tungsten carbide 
Level of Electro-

lyte 
Approx. 0.5 mm above the 

workpiece 

 

Fig. 1 An ECDM process setup 

 Machining parameters of ECDM 

In this experimental design, four factors with two 
levels were selected based on literature and experts, 
namely voltage, type of electrode, type of 
electrolyte, and gap width. Furthermore, a factorial 
design of two levels ( 24) is applied, as shown in  
Table 2.

Tab. 2 ECDM input parameters 

Input Factors Units Role Maximum Value Minimum Value 

Voltage Volt Continous 70 90 

type of electrode - Categorical Copper Brass 

type of electrolyte - Categorical NaCl NaNO3 

gap width mm Continous 1 2 

 Design of Experiments 

Based on the experimental design, 16 tests were 
run and conducted in two replications. The surface 
roughness test was carried out using Mahr Marsurf 

RD 18 instrument. The surface roughness is 
obtained from the machining process results based on 
parameters that have been determined respectively, as 
shown in Table 3. 
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Tab. 3 Result of the measurement 

Number of Trials Voltage Gap width Electrode Electrolyte MRR actual (g/min) Surface Roughness (µm) 

1 70 1 Brass NaCl 0.016 0.68 

2 90 1 Brass NaCl 0.027 0.93 

3 70 2 Brass NaCl 0.007 0.82 

4 90 2 Brass NaCl 0.014 0.91 

5 70 1 Copper NaCl 0.004 0.42 

6 90 1 Copper NaCl 0.01 0.76 

7 70 2 Copper NaCl 0.012 0.56 

8 90 2 Copper NaCl 0.026 0.52 

9 70 1 Brass NaNO3 0.011 0.73 

10 90 1 Brass NaNO3 0.025 0.69 

11 70 2 Brass NaNO3 0.007 0.82 

12 90 2 Brass NaNO3 0.028 0.94 

13 70 1 Copper NaNO3 0.022 1.043 

14 90 1 Copper NaNO3 0.015 1.114 

15 70 2 Copper NaNO3 0.007 1.107 

16 90 2 Copper NaNO3 0.033 1.553 

 ANN-PSO Modelling 

Artificial Neural Network (ANN) is an intricately 
designed computational framework inspired by the 
intricate workings of biological neural networks in the 
human brain. ANN models can capture and analyze 
intricate patterns and relationships within vast 
datasets. The application of ANN in various research 
domains and industries has led to significant 
advancements in data analysis, prediction, and 
decision-making processes. This paradigm shift in 
computing represents a remarkable fusion of 
neuroscience and technology, providing a powerful 
tool for solving complex problems and gaining deeper 
insights into complex phenomena. The utilised neural 
network architecture is Backpropagation (BP), a 
systematic approach for training in multi-layered 
networks. The approach utilised in this study is 
founded on mathematical principles, rendering it 
robust and impartial. The algorithms employed in this 
methodology are currently being refined, with 
equations and coefficient values incorporated into 
formulas aimed at minimising the sum of squared 
errors through the model error that was established 
during the training set. BPANN is a methodical 
approach to training multilayer neural networks, also 
known as multi-layered perception neurons.  The first 
layer is made up of one input set, and the last layer is 
the output (goal) that should be achieved. The neural 
network architecture typically includes an intermediate 
layer, commonly referred to as the hidden layer, 
situated between the input and output layers. In 
practical application, the quantity of hidden or 
potential variables is subject to variation. The 
maximum number of layers is three. The input layer 

of a neural network represents the input variable, 
while the hidden layer introduces non-linearity to the 
network system. Within the neural network 
architecture, the output layer is responsible for 
selecting the output variables. In contrast, the last layer 
of the hidden layer functions as the immediate output 
of the neural network. In other words, the output layer 
acts as the final computation stage, producing the 
desired results or predictions based on the input data. 
This distinct layer plays a critical role in conveying the 
processed information from the hidden layers to 
generate the final output. The significance of this 
arrangement lies in its ability to transform complex 
computations and transformations performed within 
the hidden layers into meaningful and actionable 
outcomes. Therefore, the output layer is pivotal in the 
neural network's ability to provide accurate and 
valuable insights or predictions based on the input. 

Modelling the experimental data using the ANN 
approach allows for the study of the effect that the 
input parameters have on the surface roughness and 
the metal removal rate. These input parameters 
include voltage, electrode, electrolyte, and gap width. 
The BP training process involves three stages: 
feedforward data input, backpropagation for error 
values, and weight value adjustments for each node in 
the ANN's layers.  The method of trial and error has 
been used by a number of researchers in order to 
determine the network architecture in order to obtain 
the best model [38]. As a result, there is no definitive 
rule that can be used to determine it apart from 
experimentation. The artificial neural network (ANN) 
utilised in this investigation had just one input layer, 
one hidden layer, and one output layer, as shown in 
Fig. 2 and 3, respectively. Four neurons are located in  
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the input layer of MRR and SR's neural network, 
whereas nine are located in the hidden layer, and one 
is located in the output layer.  

    
Fig. 2 Architecture of predictive model of MRR 

 

Fig. 3 Architecture of predictive model of SR 

Equation 1 is used in conjunction with the 
prediction error per-centage equation to determine the 
percentage of incorrect predictions that were 
successful [39].  

% ����� �  |��� : ����|��� �100 (1) 

Model performance is evaluated to measure the 
accuracy of a model. Assessing model performance is 
a crucial aspect of constructing predictive models. 
This study employs a performance model to evaluate 
the relationship between observed data and predicted 
outcomes. The benchmark correlation coefficient is 
used for this objective. Mean Absolute Deviation 
(MAD Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPE) are frequently used model 
performance evaluations. The current study entails the 
calculation of the Mean Square Error (MSE) metric, a 
quantitative measure that evaluates the average 
discrepancy between predicted and actual values. This 
metric is an essential tool for assessing the accuracy 
and precision of predictive models by quantifying the 
extent of deviation between predicted and observed 
outcomes. By computing the MSE, researchers can 
gain insights into the overall performance and 
reliability of the model under investigation. This 
evaluation provides a comprehensive understanding 
of the effectiveness and quality of the predictions, 
enabling researchers to gauge the level of agreement 
between predicted and actual values and identify 
potential areas for improvement. Thus, the utilization 
of the MSE metric in this investigation serves as a 
valuable means of evaluating and quantifying the 
predictive capabilities of the model being studied. As 
the value decreases, the network error in 
approximating the target value also decreases. The 
regression coefficient is estimated to determine 
whether the network output adequately corresponds 
to the expected outcome. This helps to ensure that the 
network is functioning correctly. The degree of 
suitability is indicated by a regression coefficient that 
approaches unity.  

 Mean Absolute Percentage Error (MAPE) 

In the research study, the Mean Absolute 
Percentage Error (MAPE) metric is employed to 
evaluate the average percentage deviation between 
predicted and actual values. This metric serves as a 
valuable tool for quantifying the average deviation 
between the predicted and observed outcomes, 
expressed as a percentage of the actual values. By 
utilizing MAPE, researchers can accurately measure 
the relative error between predicted and actual values, 
providing valuable insights into the precision and 
accuracy of the predictive model under investigation. 
This metric allows for a comprehensive understanding 
of the average percentage difference between 
predicted and actual values, enabling researchers to 
assess the effectiveness and reliability of the model's 
predictions. Thus, the application of MAPE in this 
research article plays a crucial role in quantifying and 
assessing the model's predictive performance. A lower 
MAPE value is indicative of a higher quality model 
[40]. Similar to Equation 2, this is the form of 
equations used. 

���� �  1� � ��� : ���� ��
�c�  (2) 

Where:  
At…Actual; 
Ft… Forecast. 



October 2023, Vol. 23, No. 5 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489

e-ISSN 2787–9402

 

654 indexed on http://www.webofscience.com and http://www.scopus.com  

 Root Mean Square Error (RMSE) 

The calculation of the root means square error 
(RMSE), which is obtained by calculating the square 
root of the average of the squared disparities between 
predicted and actual values, is included in the study 
article. This metric is a robust measure for quantifying 
the overall magnitude of errors between predicted and 
observed outcomes. By computing the RMSE, 
researchers can effectively assess the level of deviation 
between predicted and actual values while also 
considering the magnitude of these differences. The 
utilization of RMSE in this research article enables a 
comprehensive evaluation of the predictive model's 
performance, providing a reliable indicator of the 
accuracy and precision of the predictions. Therefore, 
the RMSE metric plays a pivotal role in quantifying 
and evaluating the degree of error between predicted 
and actual values within the study context. A lower 
value of RMSE indicates a higher quality of the model, 
calculated by using Eq.3  [41].  

���� �  �∑ <�� : ��@���c� �  (3) 

Where:  
At…Actual; 
Ft…Forecast. 

 Mean Square Error (MSE) 

The Mean Squared Error (MSE) is a statistical 
metric that is utilized in the process of evaluating the 
level of precision possessed by a model. It involves 
squaring the difference between each data point in an 
array and the corresponding predicted value, summing 
the squares, and then calculating the average or 
median value.  For the relevant equations, see Eq. 
4.[42, 43]. 

��� �  ∑ <�� : ��@���c� �  (4) 

Where:  
At…Actual; 
Ft…Forecast. 

 The mean absolute deviation (MAD) 

The mean absolute deviation (MAD) is calculated 
in the research study by adding the absolute 
differences between the values collected and those 
estimated. After that, the average deviation is 
calculated by dividing this quantity by the total 
number of observations. The mean absolute 
deviation, often referred to as the standard deviation, 
serves as a metric for quantifying the dispersion or 
variability of the data points. By calculating the MAD, 
researchers can assess the average magnitude of the 
deviations between actual and estimated values. This 

measure provides valuable insights into the spread or 
dispersion of the data, allowing for a comprehensive 
understanding of the variability present in the dataset. 
Therefore, using mean absolute deviation as a measure 
of dispersion plays a crucial role in evaluating and 
quantifying the level of variability within the research 
study. Equation 5 contains the equations that were 
worked with [44]. Fig. 4 show the flowchart of ANN 
modelling. 

��� �  ∑ |�� : ��|��c� �  (5) 

Where:  
At…Actual; 
Ft…Forecast. 

 

Fig. 4 Flowchart of ANN Modelling 

An optimization technique called PSO imitates the 
social behavior of flocks of birds on the hunt for food. 
Individual acts and the impact of individual behavior 
on the herd make up social behavior. A bird in a flock 
is represented by the word particle. The other birds in 
the flock will be able to fly directly there if a bird 
locates a spot for a food supply. The initial position of 
each particle in the PSO algorithm is arbitrary. It is 



October 2023, Vol. 23, No. 5 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489

e-ISSN 2787–9402

 

indexed on http://www.webofscience.com and http://www.scopus.com 655  

considered that each particle has two characteristics: 
location and velocity. A population made up of many 
particles searches for a solution using the PSO 
method. With the smallest and largest value limits, the 
population is produced at random. Each particle 
stands for a viewpoint or resolution to the current 
issue. By navigating the search space, each particle 
looks for the best answer. In order to accomplish this, 
each particle must adjust both its personal best 
position and the global best position of the entire herd 
as it moves over the search space. During the search 
for a solution, experience or knowledge is shared both 
within the particle and between it and the most 
effective particles from the entire swarm. Then, until 
a location that is almost the same is attained or a 
predefined iteration limit is reached, the search 
procedure is carried out to identify the optimal 
position for each particle in a specific number of 
iterations. By inserting the solution into the fitness 
function, each solution, which is represented by the 

particle position, will be assessed for its effectiveness 
at each iteration. The conceptual underpinning for 
optimization methods is shown in Fig. 5. The process 
parameters obtained from PSO optimization and the 
predicted response using an artificial neural network 
are shown in Table 4. 

 
Fig. 5 Optimization concept framework with the PSO 

method [45]

Tab. 4 Result of ANN PSO Optimization 

Exp. No 
MRR 

(g/min)  

Surface 
Roughness 

(µm)  
MRR 

  
  

Surface Roughness 

Logsig ANN-PSO Logsig ANN-PSO 
1 0.016 0.68 0.032 0.016 0.638 0.677 

2 0.027 0.93 0.004 0.027 0.997 0.929 

3 0.007 0.82 0.029 0.007 0.841 0.823 

4 0.014 0.91 0.024 0.014 0.657 0.908 

5 0.004 0.42 0.043 0.004 0.541 0.425 

6 0.01 0.76 0.024 0.010 0.550 0.754 

7 0.012 0.56 0.038 0.012 0.654 0.557 

8 0.026 0.52 0.031 0.026 0.626 0.526 

9 0.011 0.73 0.001 0.011 0.657 0.734 

10 0.025 0.69 0.009 0.025 1.147 0.684 

11 0.007 0.82 0.025 0.007 0.749 0.820 

12 0.028 0.94 0.015 0.028 1.077 0.943 

13 0.022 1.043 0.008 0.022 1.253 1.038 

14 0.015 1.114 0.013 0.015 1.101 1.121 

15 0.007 1.107 0.027 0.007 1.057 1.107 

16 0.033 1.553 0.032 0.033 1.504 1.544 

 Result and Discussion 

Fig. 6 presents linear regression graphs that 
compare the predicted values generated by the ANN 
with the actual response variables, following the 
modelling process. In the research study, a linear 
equation y=1.004x-0.000005 was utilized, and the 
obtained regression coefficient (R) for the validation 

dataset was 0.9998. This high number for the 
regression coefficient indicates a significant 
correlation between the experiments' results and the 
neural network output. Additionally, the regression 
models were defined for the geometrical properties, 
and the correlation coefficients obtained were found 
to be satisfactory [46]. 
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Fig. 6 Actual vs. prediction of material removal rate of 
ANN model 

A linear regression model was employed to plot the 
Material Removal Rate (MRR) values obtained from 
experimental data alongside the predictions. The 
comparison revealed that the predictions generated by 
the Artificial Neural Network (ANN) exhibited closer 
proximity to the actual values compared to the 
predictions made by the linear regression model. It is 
vital to calculate key metrics such as mean absolute 
percentage error (MAPE), mean square error (MSE), 
mean absolute deviation (MAD), and root mean 

square error (RMSE) for both the actual and predicted 
values in order further to analyse the accuracy and 
performance of the predictions. These metrics include 
mean absolute percentage error (MAPE), mean square 
error (MSE), mean absolute deviation (MAD), and 
root mean square error (RMSE). These metrics 
provide a comprehensive assessment of the level of 
deviation and overall quality of the predictions. By 
quantifying the discrepancies and measuring the 
effectiveness of the predictive models, researchers can 
obtain valuable insights into the accuracy and 
reliability of the ANN predictions compared to the 
linear regression predictions, as stated in the research 
article [26]. The residuals, which indicate the distance 
between the data points and the regression line, were 
analyzed and documented in Table 5. By examining 
the residuals, researchers can assess the extent to 
which the data points deviate from the predicted 
values. The analysis of residuals provides valuable 
insights into the accuracy and reliability of the 
regression model, allowing for a comprehensive 
evaluation of the goodness of fit. Therefore, the 
examination of residuals plays a critical role in 
assessing the agreement between the experimental 
data and the predictions made by the neural network. 

Tab. 5 Calculation results of Percentage Prediction Error of MRR 

No. 
Actual 

MRR 

Prediction 

MRR 
Residual Percentage Prediction Error (%) 

1 0.016 0.016 0.000 0.0010 

2 0.027 0.027 0.000 0.0060 

3 0.007 0.007 0.000 0.0046 

4 0.014 0.014 0.000 0.0045 

5 0.004 0.004 0.000 0.0065 

6 0.01 0.010 0.000 0.0018 

7 0.012 0.012 0.000 0.0016 

8 0.026 0.026 0.000 0.0012 

9 0.011 0.011 0.000 0.0035 

10 0.025 0.025 0.000 0.0082 

11 0.007 0.007 0.000 0.0264 

12 0.028 0.028 0.000 0.0104 

13 0.022 0.022 0.000 0.0036 

14 0.015 0.015 0.000 0.0050 

15 0.007 0.007 0.000 0.0157 

16 0.033 0.033 0.000 0.0037 
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The results of e calculations are shown in Table 6. 
The MAPE value is 0.65 <4.9%, which can be 
interpreted as a surface roughness prediction obtained 
accurately [27]. A computed result of 0 for both the 
Mean Square Error (MSE) and the Root Mean Square 
Error (RMSE) shows that the model is very close to 
the actual data. This interpretation suggests that the 
predictions made by the model exhibit a high degree 
of accuracy and precision, with minimal deviation 
from the actual values. Similarly, for the mean absolute 
deviation (MAD), the result of 0.000 indicates a 
deficient error level. This finding signifies a high level 
of accuracy and reliability in the predictions, with 
minimal discrepancies between the predicted values 
and the actual data. The minimal errors and high 
accuracy observed in the MSE, RMSE, and MAD 
metrics demonstrate the effectiveness and robustness 
of the predictive model, further affirming the 
reliability of the results. These insights, as stated in the 
research article, underscore the model's capability to 
generate predictions that closely align with the actual 
data and emphasize the high level of accuracy 
achieved in the analysis. 

Tab. 6  The results of calculating the level of accuracy 

Stats Items The calculation results 

MAPE 0.65 

MSE 0.000 

MAD 0.000 

RMSE 0.000 

 
The linear equation y = 0.9937x + 0.0049 and the 

regression coefficient (R) for the validation data set 
that was collected were both 0.9997, which indicates 
that there is a good correlation between the 
experimental and network output. In the research 
article, Table 7 analyzed the residuals to determine 
how far the data points deviated from the regression 
line. The residuals quantify the extent to which the 
observed data points differ from the predicted values. 
Additionally, in Fig. 7, the linear regression model was 
used to plot the SR values obtained from experimental 
data alongside the predicted values. 

 
Fig. 7 Actual vs. prediction of surface roughness of ANN model 

 
The comparison between the predictions 

generated by the Artificial Neural Network (ANN) 
and the linear regression model led to the inference 
that the ANN predictions exhibited a higher degree of 
proximity to the actual values than the linear 
regression predictions. This observation indicates that 

the ANN model outperformed the linear regression 
model regarding accuracy and precision in predicting 
the SR values. These findings, as stated in the research 
article, underscore the superior predictive capabilities 
of the ANN model, highlighting its ability to generate 
predictions that closely align with the actual values. 
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R² = 0.9997

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

1,800

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

P
r
e
d

ic
ti

o
n

Actual



October 2023, Vol. 23, No. 5 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489

e-ISSN 2787–9402

 

658 indexed on http://www.webofscience.com and http://www.scopus.com  

Tab. 7 Calculation results of Percentage Prediction Error of SR 

No. 
Actual 

MRR 

Prediction 

MRR 
Residual Percentage Prediction Error (%) 

1 0.68 0.677 0.003 0.0042 

2 0.93 0.929 0.001 0.0008 

3 0.82 0.823 -0.003 0.0033 

4 0.91 0.908 0.002 0.0024 

5 0.42 0.425 -0.005 0.0127 

6 0.76 0.754 0.006 0.0083 

7 0.56 0.557 0.003 0.0050 

8 0.52 0.526 -0.006 0.0112 

9 0.73 0.734 -0.004 0.0052 

10 0.69 0.684 0.006 0.0089 

11 0.82 0.820 0.000 0.0003 

12 0.94 0.943 -0.003 0.0031 

13 1.043 1.038 0.005 0.0043 

14 1.114 1.121 -0.007 0.0063 

15 1.107 1.107 0.000 0.0002 

16 1.553 1.544 0.009 0.0058 

 
The MAPE value is 0.51 <4.9%, which can be 

interpreted as a surface roughness prediction obtained 
accurately [27]. Regarding the Mean Square Error 
(MSE) and the Root Mean Square Error (RMSE), a 
calculated value of 0 indicates that the actual data and 
the anticipated values are close together. This 
interpretation indicates that the predictive model's 
performance is highly accurate, with minimal 
deviation from the actual values. Similarly, for the 
mean absolute deviation (MAD), the result of 0.004 
indicates a negligible error. This outcome signifies a 
high level of accuracy and precision in the predictions, 
with minimal discrepancies between the predicted 
values and the actual data. The exceptionally low 
errors and high accuracy observed in the MSE, RMSE, 
and MAD metrics validate the effectiveness and 
reliability of the predictive model, underscoring its 
capability to generate predictions that align closely 
with the actual data. These findings, as highlighted in 
the research article, demonstrate the model's capacity 
to deliver accurate and reliable predictions, reflecting 
a high level of precision in the analysis. Fig. 8 and Fig. 
9 each display a mean effect plot highlighting the 
influence of several factors on the rate of material 
removal and surface roughness, respectively. 

Tab. 8  The results of calculating the level of accuracy 

Stats Items The calculation results 

MAPE 0.51 

MSE 0.000 

MAD 0.004 

RMSE 0.005 

 

Fig. 8 Material removal rate main effect plot 
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Fig. 9 Surface roughness main effect plot 

 The effect of voltage 

Increasing the voltage that is applied causes a 
greater quantity of hydrogen gas bubbles to be 
formed, which results in a larger quantity of discharge 
energy at the parking zone. This causes the MRR and 
surface roughness to increase [47]. However, there is 
a maximum rate of material removal. A higher amount 
of voltage allowed the system to pour in more energy 
for machining, which resulted in more material being 
removed from the work surface and an increase in 
MRR and SR. Additionally, as the work-piece is struck 
by a greater energy spark, deeper craters will be 
formed, resulting in increased damage to the work 
surface and an increase in surface roughness [9]. 

 The effect of gap width 

The fluctuation of the machining gap, which refers 
to the space under at the substrate and the lower part 
of the tool electrode, offers a lot of positive outcomes 
benefits. These advantages encompass enhancing the 
growth of a gas film, promoting discharge activity at 
the tip of the tool electrode, and facilitating the flow 
of electrolytes beneath the tool electrode, thereby 
enabling chemical etching to occur more effectively 
[7]. Achieving precise control of the machining gap 
during drilling poses a significant challenge. 

 The effect of electrolyte 

Enhancing the Material Removal Rate (MRR) in 
Electrochemical Discharge Machining (ECDM) can 
be achieved by employing a suitable electrolyte and 
optimizing its concentration. Electrolytes with higher 
pH levels exhibit an increased MRR. On the other 
hand, neutral electrolytes like KCl and NaCl yield a 
lower MRR, while acidic electrolytes such as sulfuric 
acid and hydrochloric acid have negligible machining 
effects [12]. Additionally, the MRR is influenced by 
the average temperature of the electrolyte. It is 
recommended to utilize preheated electrolytes within 
the range of 60 to 80℃ in order to optimize MRR. 

  The effect of tool electrode  

The performance of the ECDM is greatly 
influenced by the selection of the proper electrode 
material. Analytical concerns for optimum machining 
efficiency include the electrical conductivity and 
thermal conductivity of electrodes. Additionally, it has 
been demonstrated that electrical conductivity affects 
the MRR and surface roughness [48]. The research 
focused on investigating the impact of process 
parameters in tool electrode electrochemical discharge 
machining (ECDM). It noted a significant correlation 
between the eroded workpiece material caused by 
electrical discharges and the influence of ECDM 
process parameters. Notably, these effects were 
closely associated with the tool electrode utilized in 
machining. The study aimed to understand and 
analyse the intricate relationship between the ECDM 
process parameters, the tool electrode, and the 
resulting melting phenomenon of the workpiece 
material. By exploring these connections, researchers 
aimed to enhance their understanding of the 
underlying mechanisms governing the ECDM process 
and optimize the parameters for improved machining 
performance. 

 Conclusion 

This research investigates metal removal rate and 
surface roughness of tungsten carbide workpieces 
caused by the ECDM process. Then, ANN models 
were created to predict the metal removal rate and 
surface roughness, which was dependent on ECDM 
parameters such as electrode material, voltage, gap 
width, and electrolyte. From this investigation, the 
following findings can be drawn: 

• The ANN predictions matched the 
experimental values with correlation 
coefficients (R2) in the range of 0.99%, mean 
absolute percentage errors (MPAE) in the 
range of 0.51-0.65 %, and extremely small 
root mean square errors (MSE). 

• The effectiveness combination method of the 
artificial neural network (ANN) and particle 
swarm optimization (PSO) utilized to model 
the metal removal rate and surface roughness 
behaviour in the ignited tungsten carbide 
workpiece was examined through analysis. 
The outcomes show that the ANN can 
predict with some degree of accuracy. 

• Further research is necessary to examine the 
potential utilization of preheating the 
electrolyte prior to achieving a higher material  
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removal rate (MRR) in the machining of 
tungsten carbide. 

• The surface roughness of tungsten carbide 
during machining is mostly influenced by the 
voltage applied. Furthermore, it has been 
observed that a decrease in the voltage leads 
to a corresponding reduction in surface 
roughness. 

• The findings of this current research 
investigation indicate that the electrochemical 
discharge machining (ECDM) method is a 
viable method for efficiently cutting hard 
materials. Tungsten carbide is a highly 
resistant material that poses challenges in 
terms of cutting, making it appropriate for the 
fabrication of dies and tooling. The utilization 
of an Electrochemical Discharge Machining 
(ECDM) method has the potential to enhance 
the material removal rate, as well as achieve 
the required levels of precision and surface 
finish for certain applications. Furthermore, 
the reduction in electrolyte loss resulted in 
decreased machining cost and a decrease in 
environmental degradation. 
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