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According to the application requirements of SOC in lithium batteries of Unmanned Aerial Vehicle 
(UAV), an Extended Kalman filter-Double Kalman filter (EKF-DKF) composite model was proposed to 
optimize the accuracy of the last 20% stage of State of Charge(SOC) estimation. Based on the equivalent 
model of second-order resistance-capacitance (RC) circuit improvement, the developed method 
optimized the identification accuracy of parameters, and set up a MATLAB simulation platform to jointly 
estimate SOC online with EKF and DKF. The data obtained in laboratory test environment were used 
for simulation. 
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 Introduction 

With continuous development of emerging energy 
sources, artificial intelligence, new materials and other 
fields, unmanned air vehicles (UAVs) integrated these 
three new technologies to introduce the advantages 
and strengths of these fields in military, people's live-
lihood, transportation and other sectors [1]. As the 
main energy supplying device for all kinds of electric 
equipment, lithium batteries play an indispensable role 
in supplying energy for UAVs. Considering their long 
life and low self-discharge ability, lithium batteries can 
even replace oil-electric hybrid power supply in the fu-
ture and become the only power supply mode for 
UAVs. However, at this stage, it is not uncommon for 
different dangerous situations to occur due to insuffi-
cient battery power or delayed feedback during the op-
eration or task execution of UAVs [2]. Therefore, ac-
curate prediction of state of charge (SOC) value of 
UAV batteries (battery charge condition for reflecting 
the remaining ability of the battery) is a vital step to 
ensure the normal performance of UAVs and pro-
mote their working efficiency and range [3]. 

In the current research, SOC estimation methods 
including five main approaches of ampere-hour inte-
gration method (AH) and Kalman filter methods. The 
estimation deviation of amp-time integration method 
accumulates continuously resulting in high overall er-
rors [4]. The open-circuit voltage method requires the 
supply voltage to be in a stable state and is not the best 
method for direct application on the UAV [5]. Neural 
network method has complex calculation steps and re-
quires large data training; The particle filter method 
has high precision and is suitable for nonlinear non-
Gaussian systems.But the particle filter has the prob-
lem of particle weight degradation and sample dilution 

[6]. For battery parameter estimation, extended Kal-
man filter (EKF) algorithm method is the best choice. 
EKF evaluates linearization principle of nonlinear 
functions using partial derivatives and first-order Tay-
lor series expansion.    

For an accurate SOC estimation, calculation of Ja-
cobian matrix by EKF algorithm is essential. One lim-
itation of EKF algorithm is that only first-order Taylor 
expansion can be applied to achieve high accuracy, 
which depends on well-known battery model parame-
ters and system noise signals, and incorrect back-
ground knowledge in estimation process may lead to 
divergence [7]. Previous studies have used experi-
mental data to build battery models to reduce the im-
pact of measurement and processing of noisy signals. 
However, due to the data errors in parameter online 
identification, the estimation results also have errors. 
Adaptive forgetting factor recursive least squares 
method for first-order RC model-extended Kalman 
filter (AFFRLS-EKF) was also proposed for battery 
SOC estimation. Recursive Least Square (RLS) model 
had the capacity on reducing the system and parame-
ter fluctuations through repeated updating and realizes 
real-time acquisition of system characteristics, thereby 
reducing the negative influence of using only EKF al-
gorithm. This method improves SOC estimation ac-
curacy in steady state, but it is too ideal for parameters 
to maintain constant during the flight of UAV. There-
fore, it was necessary to develop a real-time online pa-
rameter identification method to improve EKF. In 
reference [8], the combination of improved particle 
swarm optimization (IPSO) and EKF was proposed 
to achieve noise suppression and parameter identifica-
tion accuracy improvement. A repeated calculation by 
EKF form a  
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double Kalman filter (DKF),which in turn updates 
model parameters in each cycle in a timely manner. 
However, the problem that SOC estimation accuracy 
decline in the latter 20% stage of the actual battery dis-
charge process has not been considered, which is also 
the focus of the UAV lithium battery SOC. Previously, 
we proposed the estimation of lithium battery SOC 
based on LSTM while using Adam algorithm to opti-
mize fine-tuning parameters, because adaptive mo-
ment estimation (Adam) is a type of learning rate 
adaptive optimization. This algorithm can replace clas-
sical stochastic gradient descent method to more ef-
fectively update network weight to further improve 
the calculation accuracy of SOC [9]. 

In this work, we tried to modify low accuracy of 
the above methods by changing real-time parameters 
when discharge mutation occurred throughout the 
whole estimation process during UAV flight. At the 
same time, in the actual flight of UAVs, it is necessary 
to decrease cost and increase data calculation and 
transmission rates of SOC estimation [10], and then 
decrease the corresponding complexity of the algo-
rithm. Therefore, this paper proposed a combination 
of EKF-DKF. In the first 80% of the whole estimat-
ing process, EKF model could ensure the efficiency 
and quality of estimation, thereby reducing computa-
tional difficulty and data volume. In the last 20% of 
the same process, the application of DKF algorithm 
could timely update the parameters and achieve imme-
diate estimations. 

The remaining of the paper is organized as follows: 
In Second 2, an improved second-order RC circuit is 
constructed and HPPC experiment is described. 
OCV-SOC eight-order fitting simulation is performed 
based on the obtained test data and the parameter 
identification of SOC algorithm construction is com-
pleted. In Section 3, EKF and DKF algorithms are in-
troduced and the accuracy and complexity of these al-
gorithms are horizontally compared. Through com-
parison and simulation, it was determined that the 
SOC estimation of lithium batteries was generally in-
sufficient in the last 20% stage. On this basis, EKF-
DKF SOC estimation method for lithium batteries 
was developed and simulation verification was carried 
out. Finally, it was concluded that The EKF-DKF al-
gorithm proposed in this paper can improve the dy-
namic change of battery model. The compensation 
problem caused by the decrease of parameter estima-
tion accuracy in the late discharge period can be im-
proved. At the same time, it guarantees the accuracy, 
reduces the complexity of practical application, and fi-
nally improves the efficiency. 

 Materials and Methods 

 Model of lithium battery 

The newly constructed model was applied for SOC 
estimation of lithium battery pack. Accurate simula-

tion and low complexity of identifying model parame-
ters in SOC estimation is essential. In combination 
with previous report [11], under the same interference 
conditions, the complexity of reaction inside the bat-
tery was changed under different states of charging or 
discharging. At discharged status, ions could easily 
embed into cathode material to form different com-
pounds and intra-cell resistance was smaller. At 
charged status, ions were removed from the positive 
electrode material and combined with external circuit, 
resulting in relatively larger intra-cell resistance. There-
fore, we proposed an improved equivalent circuit 
model  
(Fig. 1). 

 

Fig. 1 Improved model for RC equivalent circuit  

 

Fig. 2 Relationship between voltage and time in HPPC ex-
periment 

 
Base on the traditional model of second-order RC 

equivalent circuit, one loop was added to show battery 
status and a diode module was added to control cur-
rent at each branch of ohmic and polarization internal 
resistance. Therefore, this model could simulate the 
parameters of battery at both charge and discharge 
states. 

Assuming U23 as source voltage and R5 as equiva-
lent ohm intra-cell resistance, R53  and R56  present 
battery at discharged and charged state, respectively. 
Due to charge diffusion and polarization capacitance, C� and R� were generated, which were identified as 
the R�3 and R�6 of discharged and charged states, re-
spectively. Due to charge transfer, the concentration 
difference of polarization capacitance C� and polari-
zation resistance R� were generated, which were R�3 
and R�6  at the discharged  
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and charged state respectively. When there was cur-
rent flowing through the circuit, the circuit equation 

of battery was derived according to Thevenin's theo-
rem, as shown in Equations 1 to 4. 

U8 � � iC� : U�R�C� (1) 

U8 � � iC� : U�R�C� (2) 

U; � U23 : U� : U� : iR5 � U23 : iR�<1 : e� ;?�@ : iR� A1 : e� ;?	B : iR5 (3) 

U; � U23 : UC : U6 � U23 : U�e� ;?� : U�e� ;?	  (4) 

 
 Identification of battery OCV-SOC parame-

ter relationship 

This paper mainly took battery discharge process 
as research object for parameter identification. Before 
parameter identification, it should be understood that 
battery parameters do not remain constant throughout 
the SOC cycle. For example, there was a big difference 
between higher and lower SOC periods [12]. To accu-
rately identify battery model parameters, it was neces-
sary to adopt phased identification to ensure accurate 
identification of battery model parameters within the 
whole SOC cycle [13]. 

(1) Experiment of the discharge process of lith-
ium ion battery under hybrid pulse power 
characteristic (HPPC) condition with constant 
current and observation noise 

• Step 1: At room temperature, the ternary lith-
ium battery pack was charged, SOC was 
100%, and 1h time was given; 

• Step 2: 6 min discharge at 0.1C rate was per-
formed for 30min; 

• Step 3: The above operations were continued 
until SOC=0%. (Fig. 2) 

(2) Battery open circuit voltage-SOC (OCV-SOC) 
parameter relationship identification experi-
ment 

The discharge experiment of ternary lithium bat-
tery (18650) was carried out at room temperature. The 
voltage data obtained during the discharge process 
were recorded to associate OCV and SOC. The capac-
ity of test battery pack was 5000mAh, open-circuit and 
cut-off voltages were 25V and 18V, respectively, and 
discharge performance was 15A. Therefore, in dis-
charge process, it was considered that when the volt-
age was 25V, battery was in full charge state and when 
it was discharged to 18V, the battery was in zero 
charge state. Experimental procedure was as follows: 
starting from the battery voltage of 25V, the lithium 
battery pack was discharged at the rate of 0.1C to 18V, 
500 sets of data were recorded at 2 minute-intervals, 
and the voltage value corresponding to each 10% of 
power loss was extracted from the 500 sets of data for 
subsequent relationship fitting  
(Tab. 1).

Tab. 1 OCV-SOC test data 
SOC 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 
Open 

circuit voltage (V) 
25.0 24.2 23.5 22.9 22.1 21.7 21.4 21.1 20.8 20.4 18.0 

 
As the battery voltage cannot be precisely ob-

tained, this paper proposed OCV curve (integrated 
primary open-circuit voltage into it) to obtain initial 
SOC value. Fitted accuracy of OCV curve directly af-
fected the precision of the algorithm. Impedance char-
acteristics, self-discharge and polarization inside the 
battery resulted in a terminal voltage difference from 
open-circuit voltage and corresponding equivalent 
model was originating from ohmic intra-cell resistance 
and parallel circuit voltage drop. Therefore, we applied 
small current charge and discharge.  

At this moment, the sum of the voltage drop 
across the internal resistance and the voltage drop 
across each RC parallel circuit is less than 0.5% of the 
operating voltage. Therefore, with small currents dur-
ing charging and discharging, terminal voltage was 
similar to open circuit voltage; At this time, the charge 
and discharge curve obtained can be regarded as the 
open circuit voltage curve of the battery, and the 
OCV-SOC relationship diagram of the battery can be 
obtained consequently, OCV-SOC relationship curve 
could provide a reference for final estimation [14] 
(Tab. 2).

Tab. 2 Parameters of the polynomial fitting function 
P1 P2 P3 P4 P5 P6 P7 P8 P9 

-2049.0 8985.0 -16270.0 15720.0 -8782.0 2882.0 -542.1 56.8 18.0 
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According to the data and fitting steps, the expres-
sion of OCV-SOC eighth-order fitting curve in battery 

discharge process was derived, as shown in  
Equation (5): 

D<EFG@ � :-*H0IJKL � L0L,IJK/ : (.-/*IJK. � (,-/*IJK, : L/L-IJKH � -LL-IJKM : ,H-. (IJK- � ,.. LIJK( � (LIJK* (5) 

 

Fig. 3 OCV-SOC eighth-order fitting curve 

 Discussion of results  

 SOC estimation based on EKF-DKF compo-
site model method 

We wrote a special program in Matlab software for 
SOC estimation through EKF-DKF composite model 
algorithm, which could verify the convergence, accu-
racy and estimation efficiency of ternary lithium bat-
teries. In this paper, the current, voltage and charge 
states collected in actual laboratory test conditions 
were applied to verify the calculated SOC value. 

 Accuracy problems in the comparison of AH, 
EKF and real SOC 

In this paper, we used the methods of AH and 
EKF as well as the real value of SOC to perform sim-
ulation comparison tests and found that when lithium 
battery was discharged about 20% of remaining 
power, its discharge characteristics changed from a 
more gentle discharge trend to a non-linear and sub-
stantial power decay, at this stage continued to use 
AH, EKF algorithm to estimate SOC value will have 
errors. (Figs. 4 and 5) 

 

Fig. 4 The estimation simulation comparison of AH, EKF and SOC real values in the process of battery discharge of 20%-0% 



October 2023, Vol. 23, No. 5 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489

e-ISSN 2787–9402

 

indexed on http://www.webofscience.com and http://www.scopus.com 617  

 

Fig. 5 Error comparison of AH, EKF and SOC true values during 20%-0% battery discharge 

 Estimation of Li-ion battery SOC by EKF al-
gorithm 

In order to accurately estimate the SOC value of a 
battery, and considering that the battery model is a 
nonlinear system, the EKF algorithm is commonly 
used in practical environments. The EKF algorithm 
extends the original Kalman Filter algorithm by add-
ing a linearization step in the filtering equation deriva-
tion process. Specifically, during the state estimation, 
a real-time linear Taylor approximation is performed 
on the system equation at the previous estimated state 
value. Similarly, during the prediction stage, a linear-
ized Taylor approximation is applied to the measure-

ment equation at the corresponding predicted posi-
tion. EKF was applied to test SOC value, then the 
minimum variance estimation of SOC was performed 
by a recursive algorithm. This method was able to 
maintain good accuracy during the implementation of 
the algorithm and had a strong correction perfor-
mance on the initial value as well as the noise [15]. 
Therefore, EKF algorithm was adopted to estimate 
SOC at 80% stage before the discharge of the ternary 
lithium battery to ensure its estimation accuracy while 
reducing its computational complexity compared to 
DKF algorithm, thus improving its computational ef-
ficiency in practical application. 

 

Fig. 6 EKF algorithm estimation in SOC process simulation 
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Fig. 7 EKF algorithm estimation in SOC process error simulation 

The accuracy of EKF was verified by performing 
a 0.1C per second constant current discharge at room 
temperature. Fig. 6 illustrates SOC estimation using 
EKF algorithm method with simulation parameters 
set as RN � 0.024Ω , R� � 0.015Ω, R� � 0.0015Ω , C� � 1000F, and C� � 2500F , 
where the blue curve presents reference SOC estima-
tion and red curve expresses SOC result obtained by 
EKF filtering. EKF model was relatively converged 
around the reference value in the whole discharge cy-
cle. It was found that EKF estimation error stayed be-
low 3.1%, but at the middle and late discharge stages, 
it was obviously deviated (Fig. 7). 

 SOC estimation by dual Kalman filter (DKF) 
algorithm 

3.4.1 SOC value under DKF algorithm  
EKF performs dynamic identification with a large 

error when battery model parameters are dramatically 
changed. However, when battery model parameters 
were dramatically changed during late discharge, EKF 
estimation accuracy was decreased and the optimal es-
timation was not achieved. In the previous discussion 

on parameter identification, it was mentioned that 
there are discrepancies in SOC estimation during its 
operation. However, segmented parameter identifica-
tion alone cannot fully address the parameter varia-
tions caused by model changes during the operation 
of unmanned aerial vehicles (UAVs) and their impact 
on EKF. In order to solve the two major problems 
that EKF algorithm cannot precisely reflect the ongo-
ing changes of battery model and when the SOC of a 
lithium battery undergoes rapid and dynamic changes, 
the estimation accuracy is affected due to the fixed es-
timation model, this paper introduced a simultaneous 
estimation of battery state and parameters by DKF 
model. The developed DKF had good adaptability 
and ultimately improved estimation accuracy. [16] 

The overall idea of DKF was to estimate and re-
estimate the state and parameters of the system ac-
cordingly. Two independent DKF models were ap-
plied for this performance. This paper investigated 
battery SOC estimation using DKF in for new energy 
vehicles and used the following calculation equations. 
DKF was used in a nonlinear system estimation, 
which was expressed as: 

XxZ � f<xZ��, uZ��, θZ��@ � wZ��yZ � g<xZ, uZ, θZ@ � vZ  (6) 

X θZ � θZ�� � rZ��dZcg<xZ, uZ, θZ@ � eZ (7) 

Where x is the state vector of moment k, u is output vector, θ is parameter vector, and y and d are measure-
ment vectors. It was also expressed that: 

AZ � fg<hi,ji,kil@fhi mhichin，CZh � fo<hi,ji,kil@fhi mhichil，CZk � 6o<hil,ji,k@6k mkickil (8) 
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Parameter initialization: The initialization of the 
system state and its error covariance was stated as: x5p � E
x5� (9) 

P5h,p � E
<x5 : x5p@<x5 : x5p@s� (10) 

Also, the initialization of system parameters and 
their error covariance were derived as: θ5p � E
θ5� (11) 

P5k,p � E
<θ5 : θ5p@<θ5 : θ5p@s� (12) 

Time update of status and parameters: 
Status time update: xZ� � f<xZ��p , uZ��, θZ��� @ (13) 

P5k,p � AZ��PZ��h,p AZ��s � Qh (14) 

The parameter time was updated as: θZ� � θZ��p  (15) 

PZk,� � PZ��k,p � Qk (16) 

SOC estimation based on DKF algorithm: 
Discrete state space form RC model was stated as: 

XxZ � AZ��xZ�� � BZ��uZ�� � wZ��u;,Z � g<xZ, uZ, θZ@ � vZ  (17) 

X θZ � θZ�� � rZ��u;,Z � g<xZ, uZ, θZ@ � eZ (18) 

Where: 

AZ�� �
⎣⎢
⎢⎢
⎡A1 : ∆;?�,il�B 0 0

0 A1 : ∆;?	,il�B 00 0 1⎦⎥
⎥⎥
⎤
，BZ�� �

⎣⎢
⎢⎢
⎡ ∆;C�,il�∆;C	,il�∆;}~ ⎦⎥

⎥⎥
⎤
，CZh � fo�hi,ji,kil�fhi mhichil (19) 

Partial principles of DKF filtering for SOC estima-
tion were described above which were applied for cal-
culations in the subsequent simulation modeling and 
theoretically served for subsequent EKF-DKF com-
bined filtering algorithm for SOC estimation [17]. 
 

3.4.2 Verification of SOC estimation by DKF 
Constant current discharge with 0.1C per second 

rate at room temperature was adopted to analyze the 
final effect of SOC value estimation of lithium batter-
ies by DKF model (Fig. 8). Current and voltage 

changes under laboratory conditions were applied to 
DKF algorithm and initial model parameters were in-
troduced. When the battery was only discharged, 
open-circuit voltage was 25V and SOC was 100%. 
SOC change occurred in a nonlinear downward trend 
during the whole constant discharge cycle. A real SOC 
value within 1% error was obtained which was com-
parable to that of DKF model. DKF model could 
solve the last 20% SOC in EKF-DKF filtering com-
bined model proposed in this research. 

 

Fig. 8 DKF algorithm estimation in SOC process simulation 
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Fig. 9 DKF algorithm estimation in SOC process error simulation 

 SOC estimation by EKF-DKF combined 
model algorithm 

To solve the shortcomings of EKF and DKF al-
gorithms, this paper proposed an algorithm based on 
EKF - DKF combined model for SOC solution esti-
mation. Compared to both DKF and EKF algorithms 
alone, This solution effectively addresses the problem 
of increasing battery SOC estimation errors caused by 
severe current fluctuations and low battery levels. This 
method also solved the problems of complex compu-
tation and low efficiency in the whole process of DKF 
in practical applications. EKF-DKF combined esti-
mation model enabled the estimation results of lith-
ium batteries to maintain high and efficient in the 
whole SOC cycle. 
 

3.5.1 A scheme of SOC estimation by EKF-
DKF combined model algorithm 

Composite principle was as follows: The accuracy 
of Extended Kalman EKF estimation of battery SOC 
is closely tied to the accuracy of the constructed bat-
tery model, which in turn is influenced by the battery’s 
state of charge. And in low battery period, the opera-
tion environment of UAV lithium batteries is very 
complex and changeable and  battery model accuracy 
cannot be guaranteed. Assuming single use of EKF 
model, at low power state, it is inevitable that model 
changes introduce errors in parameter identification, 
leading to a decrease in the accuracy of estimated data 
and other related issues. To ensure better SOC estima-
tion accuracy in the whole working period, some other 
SOC estimation algorithms are usually required. While 
estimating battery SOC and system state due to its 

good properties, DKF algorithm could fix battery 
model precision. Also, combining EKF and DKF fil-
ter algorithms could make up for the insufficiency of 
EKF model under the condition of current volatile es-
timation error increase. Control strategy of EKF-
DKF model is illustrated in Fig. 10. 

 

Fig. 10 EKF-DKF combined algorithm flow 
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3.5.2 SOC estimation verification analysis by EKF-DKF combined model 

 

Fig. 11 EKF-DKF algorithm in estimation SOC process simulation 

 

Fig. 12 EKF-DKF algorithm estimation in SOC process error simulation 

In this research, we applied EKF-DKF composite 
model to analyze final SOC scheme at room tempera-
ture. From Fig. 11, it was seen that in the whole con-
stant exile working condition, EKF-DKF combined 
model method converged well to the reference value. 
In the early and middle 80% stage of the working con-
dition, the estimated results were close to those of 
EKF filtering method. In the last 20% of the working 
condition, results were similar to those obtained from 
DKF filtering algorithm. Simulation results showed 
that EKF-DKF combined model algorithm retained 
the strengths and avoided the weaknesses. It cleverly 
solved the phenomenon that estimation error was in-
creased due to the excessive dependence of EKF fil-
tering method on battery model at low battery power 
as well as the efficiency problem of DKF in SOC es-
timation. Fig. 12 shows that the estimation error of 
lithium battery SOC by EKF-DKF composite model 
method maintained within 0.32%, while those of DKF 
and EKF alone were within 0.78% and 3.1%, respec-
tively. Especially at later discharge stage, EKF error 

did not converge in time. It was verified that EKF-
DEKF combined model method had higher estima-
tion accuracy. 

 Conclusion 

This paper proposed a combined algorithm of 
EKF-DKF, estimated the SOC of 18650 terpolymer 
lithium batteries used in UAVs, improved battery 
modeling, and identified related lithium battery pa-
rameters under HPPC condition. On this basis, the ac-
tual data measured in laboratory environment were 
applied for the modeling and simulation of EKF-DKF 
combined model method. In comparison to the am-
pere-hour integration method and EKF, this process 
demonstrates that the EKF-DKF hybrid model esti-
mation approach effectively solves the problem of sig-
nificant decrease in estimation accuracy at 20% re-
maining battery capacity due to the severe dynamic 
changes in battery model and parameter offsets. More-
over, it improves estimation accuracy  
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while reducing the computational complexity in prac-
tical applications, thereby increasing the efficiency of 
practical usage. 
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