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The propagation and velocity of the deformation wave in the thin isotropic plate is investigated.  
The deformation is induced by the stroke of impact body onto the facial surface of the plate. The plate is 
supported perpendicularly. The excitation of the plate oscillation is initialized by a unit force (Heaviside’s 
jump). The impact body has a rounded facet by radius c = 2.5 mm. Hook's material model and 
Kirchhoff’s and Flüegge’s geometric model have been investigated. The analytical solutions for both 
models are presented. The MATLAB script has been assembled to solve material and geometrical 
models. The results were compared for two selected points on the surface of the plate. Plate deformation 
was recorded at two points T1 (at a distance of 20 mm from the impact location on the x axis) and T2  
(at a distance of 20 mm from the impact location on the y axis). 

Keywords: Thin supported isotropic plate, Impact loading, Hooke’s material model, Kirchhoff’s and Fluegge’s 
geometrical model. 

 Introduction 

The problem of plates vibration, especially the 
vibration of thin plates, has been solved for more than 
200 years. There is still no comprehensive theory 
available that would satisfactorily solve all the issues 
associated with plates vibration. Plates, especially thin 
ones, are currently found in many areas of human 
activity. This is mainly mechanical engineering 
(construction of cars, planes, ships, containers, 
rockets, tanks, etc.), civil engineering (construction of 
bridges, buildings, concrete silos, etc.), possibly also in 
other fields of human activity (boards sports, 
agriculture, chemical industry etc.). 

Plates are structural elements bounded by two 
parallel planes (surfaces). The plate can be bounded by 
a peripheral surface or by peripheral edge (e.g., a 
cylindrical shell). The distance between the parallel 
surfaces is the thickness of the plate (h). According to 
the ratio a/h of the typical size of the plate a (edge 
length) and its thickness h, we divide the plates into: 

• Thick, where a/h ≤ 8 to 10. The analysis of 

such bodies includes all components of stress, 

strain, and displacement same for three-

dimensional solids. The general equations of 

three-dimensional elasticity are used. 

• Membranes, are plates with a/h ratio ≥ 80 to 

100. These plates lack bending stiffness. 

Lateral loads are transferred by axial tensile 

and shear forces acting in the middle plane of 

the plate (membrane forces). 

• Thin, which have a ratio of  

8 to 10 ≤ a/h ≤ 80 to 100. This type of plates 

represents the so-called transitional type 

between thick plates and membranes and 

forms the most extensive group of plates 

used. Depending on the ratio w/h of the 

maximum plate deflection w to its thickness 

h, the proportion of bending and membrane 

forces can be different. We divide these plates 

into two classes according to this ratio: 

• Rigid plates (ratio w/h ≤ 0.2) are 

flexurally rigid and transmit loads 

two-dimensionally (by internal 

bending and torsional moments and 

transverse shear forces). Midplane 

deformations and membrane forces 

are negligible. In practice, the term 

plate represents a rigid thin plate. 

• Elastic plates (ratio w/h ≥ 0.3). This 

plate is characterized by lateral 

deflections are accompanied by  
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stretching (deformation) of the 

central surface of the board. It is a 

combination of rigid plates and 

membranes. The external load is 

transmitted by the combined action 

of internal moments, shear forces 

and membrane (axial) forces. Plates 

of this type are often used in the 

aerospace industry. When the 

maximal deflection is considerably 

larger than the thickness of the plate 

(w/h > 5), the membrane force 

transfer prevails, and the bending 

stress can be neglected. The stress is 

then uniformly distributed over the 

entire thickness of the plate. 

The above division of plates is conditioned mainly 
by their rheological properties, type of load, boundary 
conditions, etc. These plates are in practice loaded by 
static or dynamic forces, usually perpendicular to the 
surface of the plate. From the point of view of plate 
damage, dynamic loading is more significant, when the 
force acts on the plate in a very short time interval 
(shock load, usually by an impact that has a specific 
kinetic energy). We divide this impact damage into 
three basic groups according to the velocity at the 
impact [1 - 3]. 

• Low velocities (up to 10 m·s-1). This damage 

is dependent on the response of the structure 

(plate), the type of material, the type and 

geometry of the impact and the residual force. 

This damage usually does not exhibit on the 

surface, but inside the body from the residual 

force. Studies of this damage are focused on 

impact dynamics, damage mechanics and 

residual properties of the material after 

impact, including damage resistance. It is also 

dependent on the size of the impact test 

specimen, its stiffness, the stiffness and 

material properties of the plate, and the initial 

conditions. 

• Medium velocities (from 20 to 100 m·s-1). 

The extent of damage depends mainly on the 

weight of the impact (usually flat), a typical 

example is e.g. a traffic accident, when parts 

of a car flying away hit other parts of the car 

at a low final velocity. 

• High velocities (ballistic velocities). This 

damage is mainly used to damage fiber 

composites in the arsenal industry. We define 

a high-velocity shock by the ratio of the 

impact velocity to the velocity of the 

transverse (pressure) wave. The pressure 

wave will induce a stress that is greater than 

the maximum stress required to fracture the 

composite in a given direction. The response 

of the material is dependent on the velocity of 

the wave propagation, not on the velocity of 

the impact. The response is controlled by the 

propagation of the wave and not by the 

velocity of the impact. At low velocity, 

delamination and crack formation occur in 

the matrix. At high speed to fiber breakage 

occurs. 

Depending on the rheological properties of the 
plate, we use different material models (Hooke's, 
Voight-Kelvin's, Maxwell's, Zener's or generalized 
Zener's model of a standard body) to solve the 
problem - see Fig. 1. 

These material models are assigned to individual 
geometric models [4, 5]. The simplest geometric 
model is Kirchhoff's (considers only vertical 
displacements and their corresponding inertial 
effects). Rayleigh’s model includes the influence of 
cross-section rotation and the corresponding inertial 
effects of the plate. Flüegge's model considers the 
effect of shear on the resulting vertical displacement. 
The inclusion of both corrections (Rayleigh and 
Flüegge) solves the Timoshenko-Mindlin model, 
which comes closest to reality. 

Currently, the attention is paid to solving the 
propagation of deformations and stress waves in 
isotropic and orthotropic materials, which allows us to 
use especially thin structures in mechanical and civil 
engineering and other fields. When solving this issue, 
it is important to use suitable material and especially 
geometric models and appropriately defined boundary 
conditions. A number of authors deal with the 
solution [6-10], but this complex issue is not 
satisfactorily resolved. A number of methods are used 
for the solution, from analytical or FEM to 
experimental [11, 12]. 
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Fig. 1 Material models of plates (E, G – modulus of elasticity in tension and shear, µ, λ – coefficients of normal and shear viscosity, 
η, υ Poisson's ratio for elastic and viscous component, aij, bij, cij, dij – matrix of coefficients, εj – deformation vector) 

 

 Analytical solution of thin plate 

Analytical solution of free oscillation and non-
stationary tension of thin plates (h << (a - length, b – 
width), middle plane bisects the thickness of the plate) 
is based on motion equations, mathematical models of 
these plates, which are independent of the material 
description. When solving a specific problem, it is 
necessary to supplement these motion equations with 
a description of the material properties of the plate 
and consider the type of its load, including initial and 
boundary conditions [13, 14]. 

When solving plates, we arise from their 
rheological and geometric properties. We assume that 
the plate is symmetrical in three planes. We further 
assume that 

• Longitudinal elements of the middle plane do 
not change their length, even after 

deformation of the plate, so they have zero 
normal strains and zero normal stresses 

• Displacements of points lying outside the 
middle plane in the directions of the x and y 
axes are directly proportional to the distance 
from this plane –> linear dependence of the 
stress in these directions. 

Thus, the solution equations contain nine 
independent constants. Furthermore, we assume small 
deformations of the plate under load and stress 
directions that are different from the directions of 
symmetry of the material axes. The physical equations 
that describe the relationship between stress and strain 
components for a 3D continuum can be simply 
written in the form of a generalized Hooke's law in the 
form:
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σik = ciklm ·  εlmfor i, k, l, m = 1, 2, 3 (1)

Where:  
σik…Components of the normal and shear stress 

tensor [Pa],  
ciklm…Stiffness coefficients [Pa],  
εim…Components of the specific deformation 

tensor [-]. 
By solving equation (1), we get 81 stiffness coeffi-

cients, which, however, are generally not independent. 
If we assume only force that act between the elemen-
tary surfaces with a continuous stress distribution, 
then the elementary forces from the normal stresses 

acting on the walls of the element will pass through its 
center of gravity (with an infinitesimally small devia-
tion). From this follows the law of combined shear 
stresses. Of the original 81 coefficients, only 36 will 
remain independent (it is valid ciklm = ckilm = cikml = ckiml, 
ciklm = clmik, it follows that σik = σki and analogously  
εlm = εml, for i ≠ k and l ≠ m). 

Using the above mentioned and abbreviated 
indices, Hooke's law can be written in a simplified 
form. 

σi = cij εjfor i, j = 1, 2, 3, 4, 5, 6 (2)

If the material has three mutually perpendicular 
planes of symmetry intersecting in three intersections, 
which form three mutually perpendicular material 
axes, and their direction is identical to the direction of 
the coordinate axes, then cij = 0, if one of the indices 
i, j = 4, 5, 6. Then the number of independent 
coefficients is reduced to 12. We assume the validity 

of the superposition principle, then we reduce the 
number of these coefficients by applying Betti's 
theorem to 9. In our case, we consider the isotropic 
material. 

If the coordinate axes coincide with the material 
axes, the relationship between the stress and strain 
components can be expressed as: 

⎣⎢
⎢⎢
⎢⎡
σx

σy

σz

τyz

τxz

τxy⎦⎥
⎥⎥
⎥⎤

=

⎣⎢
⎢⎢
⎢⎡
c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66⎦⎥
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⎥⎤ ⋅
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⎢⎡

εx

εy

εz

γ
yz

γ
xz

γ
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⎥⎥
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 (3)

Or in the inverse form of equation: 
εj = sij⋅σifor i, j = 1, 2, 3, 4, 5, 6 (4)

Where:  
sij…Matrix of elastic modules [-]. 
The solution of equations (3), (4) is given, for 

example, in the literature [13, 15, 16], where, using 
Betti's theorem, relations between elastic constants for 
orthotropic material are obtained. 

μ
xy

Ey = μ
yx

Ex            μ
zy

Ey = μ
yz

Ez            μxz
Ez = μ

zx
Ex. (5)

Assuming: 

σz = 0γxz = 0γyz = 0 (6)

From equations (3, 4, 5, 6) the relations for deformation of the plate are derived: 

εx = 
EFEG �  σx

Ex

� μyx

Ey

σy �  μzx

Ez

σz  εy =  
EHEI �  σy

Ey

�  μxy

Ex

σx � μzy

Ez

σz  εz =  
EHEJ �  σz

Ez

� μxz

Ex

σx �  μyz

Ey

σy 

(7)

 γ
yz

 =
EHEJ +

EKEI = 
τyz

Gyz

  γ
xz

 =
EFEJ +

EKEG = 
τxz

Gxz

  γ
xy

 =
EFEI +

EHEG = 
τxy

Gxy

 

If we assume small deformations, we can express 
relation between the Kirchhoff and Rayleigh model: EKEG = Lx

EKEI = Ly (8)

And for the Flüegge and Timoshenko-Mindlin 
models, which consider the effect of shearing forces 
on plate deflection: 

EKEG = Lx + MNO EKEI = Ly + MPO (9)

Where:  
φx, φy…The angle of rotation of the cross-sections 

of the plate about the x and y axes [-],  
γxy, γyz…Shear deformations [-]. 
With small deformations and the assumption of 
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conservation the planar cross sections of the plate 
element, it is possible to write for displacements in the 
directions of the x and y axes: 

u = -zLN                 v = -zLP (10)

By modifying the above equations and substituting 
into (7), the inverse relations are derived:

σx = 
Ex

1-μ
xy

μ
yx

Qεx + μ
yx

εyR               σy = 
Ey

1-μ
xy

μ
yx

Qεy + μ
xy

εxR               τxy  =  Gxyγ
xy

 (11)

From the given relations it follows that the 
components of the stress tensor σx, σy, τxy at any point 
of the plate A (x, y, z) are a linear function of z, then 
in the median plane z = 0, these stresses are zero. 

Assuming small strains, the components of the 
strain tensor are functions of the displacement vector 
v in the Cartesian coordinate system. If we further 
assume that εz = 0, then the vertical displacement w of 
the general point of the median surface is not a 
function of z. Then: 

w = w (x, y, t) (12a)

Similarly, from equations (7) we get for 
displacements u, resp. v relationships: 

u = u (x, y, z, t)v = v (x, y, z, t) (12b)

The above equations describe the deformation 
geometry of the thin plate and the basic stress, from 
which we can derive the equations of motion for all 
considered basic mathematical models of the thin 
orthotropic plate. 

After determining the mechanical properties of the 
plate material (physical equations) and after analyzing 
the geometry of the deformation of the thin plate 
based on the accepted assumptions (geometrical 
equations) and their interrelationship (i.e. established 
relations for stress components as a function of 
displacements), the conditions of the dynamic balance 
of forces and moments are determined acting on the 
plate element. The effects acting on this element form 
a general spatial system of forces for which six 
equations of motion are valid. Three equations of 
motion are component equations written in the 
direction of the x, y, z coordinate axes and three 
moment equations written to the x', y', z' axes, which 
are parallel to the coordinate axes and pass through 
the center of gravity of the element. 

The motion equations are written for an element 

with edges dx × dy in the directions of the x and y axes. 
In the direction of the z axis we consider the 
dimension of the plate of thickness h (Fig. 2). 

 

Fig. 2 Forces and stresses acting on the plate element 
 
In the theory of thin plates, we usually formulate 

motion equations in integral form for the element dx 
× dy × h, i.e. using specific shear forces and bending 
and torque moments, referred to a unit of length and 
thus in a finite area 1 × h (Fig. 3). 

 

Fig. 3 Forces and moments acting on the plate element 
 
After substitution and adjustments, we will get the 

specific moments: 
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h/2

-h/2
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 (13)

And for specific shear forces the relations: 
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To write the equations of motion, we determine 
the moments of inertia of the mass to the axes that 

pass through the center of gravity of the element  
(x', y') - (Fig. 4). 

 

Fig. 4 Determination of moments of inertia of the mass of the element 
 
Assuming that h >> dx, dy, we determine the mass moment of inertia of the plate element from the relations: 

Jx´ = Jy´ = S ρz2dxdydz= 
ρh

3
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12
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ρh (dx

3
+ dy

3
)

12
 

If the above assumptions are valid, the stress 
courses τxy and τyx depending on z are analogous to the 
stress σx and σy. They therefore have a linear course 

and are asymmetric with respect to the z coordinate. 
For stresses after adjustments, we get relations: 

∂
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- S τyxdz + S τxydz = 0

h/2
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The equality of the combined stresses τyx = τxy 
follows from the last moment equation mentioned 
above. Three equations of motion remain, which are 
valid for the general considered motion of the element 
and, in addition to displacements, also consider its 
rotation. These equations are valid for the Rayleigh 

and Timoshenko-Mindlin models. For models that 
neglect the rotational inertia of the element (Kirchhoff 
and Flüegge) they are further simplified. The 
equations of motion for the forces and moments 
acting on the plate element dx × dy × h can be 
expressed in integral form after adjustments: 
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Where:  
ρ…Density [kg.m-3],  
F…Excitation force [N],  
Jρ…The moment of inertia of the mass of the 

element dx × dy × h [Nm].  
This case is important for the analysis of the 

propagation of stress waves. But it is less suitable for 
the comparison of the theoretical and experimental 
solution because the point load cannot be practically 
implemented in the experiment. The external point 
load always acts in a certain area (rectangular aF, bF, 
circular with radius c, etc.) and the continuous load has 
different intensity [17-22]. In our case, we compare the 
analytical solution of wave propagation from shock 
loading of two geometric models that have one 
common material model. 

In both cases (Kirchhoff, Flüegge) for a plate that 
is supported around the perimeter is valid that at the 
point of support there is: 

• Vertical displacement w = w(x, y, t) = 0 

• Bending moment mx = my = 0  

Stress waves propagate in the plate by free 
harmonic oscillation with frequency ω. 

 Solving geometric models of thin isotropic 
plates 

The paragraph is devoted to the comparison of the 
propagation of deformations and wave velocities in a 
thin isotropic plate induced by shock for the 
Kirchhoff and Flüegge geometric models. In both 
cases, the Hooke material model is considered.  
The impact is caused by a body with a circular cross-
section (̟c2). The thin plate is supported around the 
perimeter, the external load is continuous and of 
constant intensity. The time course of the load is in 
the form of a Heaviside step function. 

2.1.1 Kirchhoff model 
The simplest geometric model is the Kirchhoff 

(mK) model, which considers only vertical 
displacements and their corresponding inertial effects. 
An isotropic thin plate is solved without corrections, 
then Jρ = 0. The second and third equations (17) then 
have the character of moment equations of static 
equilibrium, the influence of moments of inertia is 
neglected, and effect of rotation of cross sections 
respectively. The time courses of the deformation of 
the thin plate, which are caused by the excitation load, 
are searched for. So, equations (12a) and (12b) are 
solved. The solution for equations (12a), when excited 
by a solitary force F0 is: 

w(x, y, t) = 
16

abc

F0

ρh
T T J1(γ

mn
c)

γ
mn

sin αn xF cos β
m

 y
F

ωmn
2

 sin αn x sin β
m

 y sin
2
 
ωmn

2
t

∞

n = 1

∞

m = 1

 (18)

Where:  
F0…Excitation force [N],  
J1…Bessel function of the first kind, first order for 

the argument γmnc [-],  
a, b…Thin plate dimensions [m],  
c…The radius of the circle of the applied load  

body [m],  
h…Plate thickness [m],  
t…Time [s],  

x, y…Coordinates of the resolved point [-],  
xF, yF…Coordinates of the center of the circular 

load [-], 
αn, βm…Constants [-],  
γmn…Constant [-],  
ρ…Density [kg.m-3],  
ωmn…Eigen frequency [Hz]. 
For eigen frequency is valid: 

ωmn= Uαn
2 + β

m

2 VW D

ρh
= Uαn

2 + β
m

2 V ch√12
 (19)
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Where the stiffness moduli for an isotropic material are D = Dx = Dy, elasticity E = Ex = Ey and material 
viscosity coefficients µ = µx = µy. Then: 

D = Eh
3

12(1- μ2)
= Dx= Dy

αn= n π

a
 β

m
= m π

b
 γ

mn
=Yαn

2 + β
m

2
 (20)

Similarly, displacements in the direction of the axis x = u(t), axis y = v(t) are determined from: 

u = -zφ
x
 - 16

abc
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(21)

 v = -zφ
y
 = - 16
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2
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By deriving (18, 21), the relations for the velocities in the axis direction x, y, z are obtained: 

w _ = -
8z
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γ
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 v _ = 8z

abc
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ρh
T T J1(γ
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γ
mn

β
m

ωmn

∞

n = 1
∞

m = 1
sin αn xF sin β

m
 y

F
sin αn x cos β

m
 y sin ωmnt 

Similarly, by substituting relation (18) into (8) and 
adjusting, the rotation angles of the tangents are 
obtained ϕx, ϕy in point x, y. 

By substituting into (13) using equation (16),  
the relations for bending stresses σx, σy, and shear 
stresses from the bending moment (τyx = τxy) and shear 
stresses from shear forces (τxz and τyz) are obtained 
after adjustments, see e.g. [13]. 

2.1.2 Flüegge model 
The Flüegge model (mF) of a thin plate differs 

from the Kirchhoff model (mK) by respecting the 
effect of shear, i.e. that it introduces shear corrections, 
but does not respect the effect of moments of inertia. 
Since ∂2ϕx/∂t2 = 0 and ∂2ϕy/∂t2 = 0, the second and 
third equations (17) change back to equations of 
moment static balance. 

Displacements (12a, 12b) in the direction of the 
axes x = u(t), y = v(t), z = w(t) caused by the impact 
load then have the form for the axis z = w(x, y, t).

  w
x, y, t� = 16

abc

F0

ρh
T T J1(γ

mn
c)

γ
mn

sin αn xF sin β
m

 y
F

∞

n = 1
∞

m = 1
sin αn x sin β

m
 y sin2 ωF

2
t (23)

For axis x = u(x, y, z, t) and y = v(x, y, z, t) using equations (9, 10) we get relations: 

u
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x
= - 16

abc
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(24)

 v
x, y, z, t� = -zφ
y
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Where: 

γ
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2 αn= n π
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 β
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b
 ωF = a11 + a12b2 + a13b1 (25a)
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For the isotropic material of the plate, it is assumed 
that the stiffness modules D = Dx = Dy, elasticity  
E = Ex = Ey and the viscosity coefficients of the  

material µ = µx = µy. 
We determine the coefficients a and b from the 

relations for ωF calculation: 

a11 = Gxzk

ρ
αn

2 + Gyzk

ρ
β

m

2
 a12 = Gxzk

ρ
αn a13 = 

Gyzk

ρ
β

m
 

(25b)

a21 = a13

12

h
2
 a22 = 12

ρh
3

(Gxyhk + Dxαn
2 + Dxyβ

m

2
) a23 = 12

ρh
3

(Dxμ
xy

+ Dxy)αnβ
m

 

a31 = a13

12

h
2
 a32 = 12

ρh
3

(Dyμ
yx

+ Dxy)αnβ
m

 a33 = 12

ρh
3

(Gyhk + Dyβ
m

2
+ Dxyαn

2) 

b1 = a22a31 - a32a21

a23a32 - a22a33

 b2 = `a21

a22

 + a23

a22

b1a 
 

Where:  
k…Dimensionless coefficient respecting the 

course of the shear stress [-].  

The velocities in the directions of individual axes 
are determined by derivation (23, 24) according to 
time and adjustment. 
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Equivalently, from relations (8, 9) by substituting from (23) and modifying, we get the relations for rotation of 
the tangents ϕx, ϕy: 
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 Methods of solution 

The article deals with the solution of propagation 
of longitudinal and transverse waves in a thin isotropic 
plate. As mentioned above, a thin isotropic plate is 
solved. Kirchhoff's and Flüegge's geometric models 
are compared, the plate material is assumed to be 
isotropic. 

 Methodology 

Wave propagation is solved analytically in the 
MATLAB program. Individual geometric models 
were programmed and the courses of displacements 
and velocities in individual axes (x, y, z) were 
determined. 

The following conditions were set for the solution: 
• The velocity of wave propagation in the given 

material (depends on the material and 
dimensions of the plates) was determined, 
both in the longitudinal and transverse 
directions. 

• The maximum calculation time is determined 
by the speed of wave propagation in a given 
direction (longitudinal and transverse wave) 
and the shortest distance to the edge  
(the wave will be reflected at the support place  
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and the wave will be deformed - it was not 
already monitored). 

• The plate dimensions were selected  
(a × b × h, where a = 200 mm, b = 100 mm,  
h = 2 mm). 

• The plate is supported around the entire 
circumference in the width of 5 mm (the 
original dimension of the plate before is  
210 × 110 × 2 mm). 

• The plate load is the impact force at the center 
of the plate, the center of the impact is at the 
geometric center of the plate. 

• The magnitude of the impact force was set at 
F(t) = 1 N. 

• The distance at which the deflections were 
monitored and the velocities were determined 
was at 20 mm from the center of the impact. 

• Due to the fact that it is not possible to 
achieve a point impact of the force during the 
experiment, the radius of the impact body of 
the force was chosen c = 2.5 mm. 

The velocity of wave propagation in the transverse 
and longitudinal directions was determined  

(a transverse wave has a velocity of 0.5 of the velocity 
of a longitudinal wave). The size of the impact force 
does not affect the course (shape) of wave 
propagation (deflections, velocities, stress), but it does 
affect their size. 

The course of the propagating shock wave 
(deformation, deformation rate) was determined 
according to the relationships given in section 2.  
For the assessment of wave propagation, only the first 
wave (deformation, velocity, acceleration, stress) 
before it reaches the interface is important (plate 
edges, weaving, support, etc.). The interference will 
occur after reflection. 

 Results and discussion 

An isotropic aluminum plate Al 99.5 was chosen 
for the solution (chemical composition: Al 99.56%,  
B 0.001%, Bi 0.0002%, Ca 0.002%, Cd 0.0001%,  
Cr 0.001%, Cu 0.0018%, Fe 0.3097%, Ga 0.0084%, 
Hg 0.0002%, Mg 0.0012%, Mn 0.0036%, Na 0.0002%, 
Ni 0.0034%, P 0.0004%, Pb 0.0011%, Si 0.0721%,  
Sn 0.0008%, Ti 0.0187%, V 0.0096%, Zn 0.0025%, 
others 0.0038%). A sheet with a thickness of 2 mm 
was produced from the mentioned material by 
unidirectional cold rolling. Test plates with the 
dimensions a × b × h (210 × 110 × 2 mm) and test 
rods for the tensile test were cut from the sheet, so 
that they were not affected by heat. 

 

Fig. 5 Scheme of a supported plate (T1 (0, 20), T2 (20, 0), - observed points, C - geometric center of the plate, center of impact, F0 
- impact force, x, y, z - axes passing through the geometric center of the plate) 
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A tensile test was performed on the Inspekt  
100 kN tensile testing machine (see Fig. 6). 

 

Fig. 6 A broken test rod in a tensile test machine 

The measurement was repeated 10 times (the strain 
diagram including average values is in Fig. 7) and 
statistically evaluated. The resulting value of the tensile 
modulus of elasticity was used in the calculations. 

 

Fig. 7 A broken test rod in a tensile test machine 
 
Material properties of the plate are given in Tab. 1 

[23-27].

Tab. 1 Material properties of the plate 

Property Symbol Unit Value 

Young’s module E = Ex = Ey = Ez Pa 7 × 10-10 

Poisson’s ratio µ - 0.34 

Density ρ kgm-3 2699 
 
To verify the statement that the magnitude of the 

shock force does not affect the time course of shock 
wave propagation in isotropic material, the calculation 
of displacement propagation in the direction of the  
z axis (w(t)) was performed for three magnitudes of the 
shock force (F0 = 1, 5, 10 N) for the Kirchhoff plate 
model and a mutual comparison was made (Fig. 8). 

 

Fig. 8 Comparison of the displacement (deformation) w of a 
thin plate in the direction of the z axis depending on the 

magnitude of the impact force (Kirchhoff's geometric model of 
the plate, Hooke's material model) 

 
3.2.1 Kirchhoff’s Model – Results of the Solution 

The propagation of the wave in the direction of the 
x, y and z axes is monitored, both the magnitude of 

the deformation and its rate. It follows from the 
theory that the velocity of propagation of the shock 
wave in the longitudinal direction is twice the velocity 
of the transverse wave. For isotropic materials, it is 
assumed that the wave propagation velocities in the  
x and y axis directions are equal. 

Fig, 9a) shows the propagation of the deformation 
of the thin plate in the direction of the x and y axes at 
a distance of 20 mm from the impact center, i.e. at 
points T1 (0, 20) and T2 (20, 0). 

 

Fig. 9 Displacement in the direction of the x and y axes (a) 
and in the direction of the z axes (b) for point T1 and T2 as a 

function of time (Kirchhoff) 
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Tab. 2 Displacement of wave in x (u) and y (v) axis direction in points T1, T2 (Kirchhoff) 

Symbol Time 
Displacement Comparison 

u (T2) v (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m] [m] [m] [%] 

1 2 3 4 5 6 

t1 2.500 × 10-6 0.284 × 10-10 0.284 × 10-10 0.000 × 10-10 0.000 

t2 3.400 × 10-6 -1.338 × 10-10 -1.337 × 10-10 0.001 × 10-10 -0.075 

t3 5.100 × 10-6 4.662 × 10-10 4.670 × 10-10 0.008 × 10-10 0.172 

 
The courses of displacement in the longitudinal 

direction u in the direction of the x axis and 
displacement v in the direction of the y axis are 
identical. In the figure (Fig. 9a) both lines overlap 
(there is no visible difference). As can be seen from 
Fig. 9a) and Tab. 2, the displacement differences in the 
direction of the x-axis (u) and in the direction of the  
y-axis (v) are very small. The biggest difference is at 
time t3 = 5.1 × 10-6 s and that is 0.172 %, which is very 
little. It can be stated that the agreement is very good. 

The differences are believed to be due to inaccuracies 
in the determination of the Bessel function and the cos 
and sin functions. 

Displacement courses in the z-axis (w - see Fig. 9b) 
and their numerical values at selected times are shown 
in Table 3. From Fig. 9b) and Tab. 3, a very good 
agreement of vertical displacements in both points 
(T1, T2) can be seen. The difference reaches its 
maximum value at time t3 = 16.70 × 10-6 s.

Tab. 3 Displacement of wave in z (w) axis direction in points T1, T2 (Kirchhoff) 

Symbol Time 
Displacement Comparison 

w (T2) w (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m] [m] [m] [%] 

1 2 3 4 5 6 

t1 0.430 × 10-5 0.901 × 10-10 0.901 × 10-10 0.000 × 10-10 0.000 

t2 0.650 × 10-5 -6.864 × 10-10 -6.860 × 10-10 0.004 × 10-10 -0.058 

t3 1.670 × 10-5 69.650 × 10-10 69.380 × 10-10 -0.270 × 10-10 -0.388 

 
It can be stated that the deformation is propagated 

uniformly in the x, y, z axis. The slight differences are 
beyond possible mathematical errors (determining the 
magnitude of the sin and cos functions). 

As mentioned above, waves in a thin plate 
propagate in the direction of the x, y axis at twice the 
velocity than in the direction of the z axis. The time 
trends of the velocities (points T1 and T2) are 
presented in the Fig, 10a). Numerical values of speed 
u_  and v_ at selected times and points are in Tab. 4 in the 
direction of the x axis.  

As can be seen from Tab. 4, the difference in wave 
speed propagation is the highest at time  
t3 = 4.100 × 10-6 s, which is probably due to the 
instability of the calculation (the already mentioned 
determination of the size of the cosinus and sinus 
functions, the inaccuracy of the Bessel function 
calculation, etc.). At other times, the course of the 
wave propagation velicity in both directions (x, y) 
shows good agreement. 

 

Fig. 10 Velocity time trend in the x and y axes direction (a) 
and in the z axis direction (b) for point T1 and T2 

(Kirchhoff) 
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Tab. 4 Velocity of wave propagation in x (u_) and y (v_) axis direction in points T1, T2 (Kirchhoff) 

Symbol Time 
Velocity Comparison b_  (T2) c_  (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m.s-1] [m.s-1] [m.s-1] [%] 
1 2 3 4 5 6 
t1 1.400 × 10-6 0.975 × 10-4 0.975 × 10-4 0.000 × 10-4 0.000 
t2 2.900 × 10-6 -2.925 × 10-4 -2.921 × 10-4 0.004 × 10-4 -0.137 
t3 4.100 × 10-6 5.578 × 10-4 5.594 × 10-4 0.016 × 10-4 0.287 

 
The course of the speed in the transverse direction 

w_  (in the z axis) - see Fig, 10b) shows a very good 
agreement in both mutually perpendicular points  
T1 and T2 – Tab. 5.

Tab. 5 Velocity of wave propagation in z (w_ ) axis direction in points T1, T2 (Kirchhoff) 

Symbol Time 
Velocity Comparison d_  (T2) d_  (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m.s-1] [m.s-1] [m.s-1] [%] 
1 2 3 4 5 6 
t1 0.340 × 10-5 0.430 × 10-6 0.430 × 10-6 0.000 × 10-6 0.000 
t2 0.530 × 10-5 -0.993 × 10-6 -0.995 × 10-6 -0.002 × 10-6 0.201 
t3 1.030 × 10-5 2.454 × 10-6 2.421 × 10-6 -0.033 × 10-6 -1.345 

 
As can be seen from Fig. 10b) and Tab. 5, the wave 

propagation velocities in the transverse direction at 
times t1 and t2 are the same. Small variations in time t3 
can be attributed to rounding in the calculations. 
Compared to the velocity propagation in the 
longitudinal direction (x and y axes), the propagation 
velocity in the transverse direction (z axis) is half (see 
longer times of local extrema in Tab. 4 and Tab. 5). 

 
3.2.2 Flüegge’s Model – Results of the Solution 

A similar calculation was performed for Flüegge 
model as for the Kirchhoff model. Displacement 
relations (23, 24) and equations (25a, b) were used. 
The velocities were determined from relations (26). 
The analytical calculation was again performed in the 
MATLAB program. 

Fig. 11a) shows the course of displacements in the 
x and y directions during shock loading of the plate in 
the geometric center (see Fig. 5). It can be seen from 
the course that the deformation propagates uniformly 
from the point of impact in all directions of the xy 
plane – in circles. Numerical values of local extremes 
at times t1, t2 and t3 are shown in Tab. 6. At time t1,  

the difference in deviation values is less than 3.5 %, 
which is a good agreement. The difference can be 
attributed to rounding inaccuracies in the calculation. 

 

Fig. 11 Displacement in the direction of the x and y axes (a) 
and in the direction of the z axes for point T1 and T2 as a 

function of time (Flüegge)

Tab. 6 Displacement of wave in x (u) and y (v) axis direction in points T1, T2 (Flüegge) 

Symbol Time 
Displacement Comparison 

u (T2) v (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 
 [s] [m] [m] [m] [%] 
1 2 3 4 5 6 
t1 0.430 × 10-5 -0.029 × 10-10 -0.028 × 10-10 0.001 × 10-10 -3.448 
t2 0.630 × 10-5 3.079 × 10-10 3.079 × 10-10 0.000 × 10-10 0.000 
t3 1.070 × 10-5 -19.600 × 10-10 -19.600 × 10-10 0.000 × 10-10 0.000 
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Fig. 11b) shows the course of propagation of 
transverse displacement in the direction of the z axis 
at points T1, T2. The displacement trend shows a very 
good agreement. As can be seen in Tab. 7,  
the difference in lateral displacement is less than 0.6 % 

at time t1. The displacement trend is the same at both 
points (T1, T2). The slight deviation can again be 
attributed to the effect of rounding during the 
calculation.

Tab. 7 Displacement of wave in z (w) axis direction in points T1, T2 (Flüegge) 

Symbol Time 
Displacement Comparison 

w (T2) w (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 
 [s] [m] [m] [m] [%] 
1 2 3 4 5 6 
t1 0.560 × 10-5 0.169 × 10-10 0.168 × 10-10 -0,001 × 10-10 -0.592 
t2 0.740 × 10-5 -7.564 × 10-10 -7.565 × 10-10 -0.001 × 10-10 0.013 
t3 1.690 × 10-5 72.570 × 10-10 72.570 × 10-10 0.000 × 10-10 0.000 

 
Fig. 12 shows the course of the velocity of the 

propagating wave in the xy plane (Fig. 12a) and in the 
z axis (Fig. 12b) at points T1, T2. A very good 
agreement can be seen from the pictures. In Fig. 12b) 
after time t3, the influence of the reflected wave from 
the interface is already visible. It is evident from this 
that the original and reflected wave will be 
superimposed and the course will be significantly 
influenced. In the xy plane, where the speed of the 
propagating wave is twice that of the transverse 
direction, the influence of the reflected wave is not 
noticeable in the monitored time period (the interface 
distance is at least 25× greater than in the transverse 
direction, the monitored time is too short).  

As can be seen from Tab. 8, the difference in 
velocity wave propagation is greatest at time t1, less 
than 0.4 %, which can again be attributed to the effect 
of rounding. Tab. 9 shows the local speed extremes in 
the transverse direction at points T1, T2.  
The agreement on both points is very good. 

 

 

Fig. 12 Velocity in the direction of the x and y axes (a) and 
in the direction of the z axes for point T1 and T2 as a 

function of time (Flüegge) 
 

Tab. 8 Velocity of wave propagation in x (u_) and y (v_) axis direction in points T1, T2 (Flüegge) 

Symbol Time 
Velocity Comparison b_  (T2) c_  (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m.s-1] [m.s-1] [m.s-1] [%] 
1 2 3 4 5 6 
t1 2.500 × 10-6 -1.053 × 10-4 -1.049 × 10-4 0.004 × 10-4 -0.380 
t2 3.300 × 10-6 6.034 × 10-4 6.036 × 10-4 0.002 × 10-4 0.033 
t3 5.400 × 10-6 -8.034 × 10-4 -8.032 × 10-4 0.002 × 10-4 -0.025 

Tab. 9 Velocity of wave propagation in z (w_ ) axis direction in points T1, T2 (Flüegge) 

Symbol Time 
Velocity Comparison d_  (T2) d_  (T1) Col. 4 – Col. 3 (Col. 5 / Col. 3)·100 

 [s] [m.s-1] [m.s-1] [m.s-1] [%] 
1 2 3 4 5 6 
t1 0.270 × 10-5 0.307 × 10-6 0.307 × 10-6 0.000 × 10-6 0.000 
t2 0.380 × 10-5 -0.963 × 10-6 -0.963 × 10-6 0.000 × 10-6 0.000 
t3 1.020 × 10-5 2.237 × 10-6 2.236 × 10-6 -0.001 × 10-6 -0.045 
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3.2.3 Comparison of Kirchhoff’s and Flüegge’s 
Models 

From the above calculations, it follows that when 
comparing the results performed according to the 
geometric model of Kirchhoff and Flüegge using the 
material model of Hooke, we can focus on the 
comparison of 

• Shape of wave propagation in an isotropic 
material. 

• From the comparison of maximum values 
depending on time. 

The courses of deflections and speeds are 
compared, both in the longitudinal (x, y axes) and 
transverse (z axis) directions. Obviously,  
the maximum values will differ since the two models 
are based on different assumptions. Flüegge's model 
extends the original Kirchhoff theory, which 
considers only vertical displacements and their 
corresponding inertial effects, by the effect of shear 
on the resulting vertical displacement. 

Considering that this is an isotropic material (see 
the results above), we deal with the comparison of 
longitudinal and transverse displacement, velocity in 
the longitudinal and transverse directions only at  
point T1. 

Fig. 13 compares the displacement (deformation) 
propagation courses in the y direction (Fig. 13a) and in 
the transverse direction (Fig. 13b – z axis). 

 

Fig. 13 Displacement course in the y-axis (a) and in the z-
axis (b) for the Kirchhoff and Flüegge model at point T1 
 
From the course of displacements in the y-axis 

(Fig. 13a), it can be seen that at the beginning, local 
extremes (positive and negative) are visible in 
Kirchhoff's case, they are quite significant, while in 
Flüegge's case, only the positive extreme is noticeable. 
The significant positive extreme in Kirchhoff and 
Flüegge are similar in shape, but in Flüegge it is lower 
and shifted to a longer time. It is probably caused by 
the influence of the distribution of the energy of the 
impact on the deformation and the shear force. 

According to Kirchhoff's model, the deformation 
in the direction of the y axis reaches its maximum 
positive value at a time of 5.10 × 10-6 s and that is 
4.670 × 10-10 m, with Fluegge's model the deflection 
is 3.079 × 10-10 m at a time of 6.30 × 10-6 s. 

In the direction of the z axis, for the Kirchhoff 
model, the maximum positive deflection is  
6.938 × 10-10 m at a time of 1.67 × 10-5 s, for the 
Flüegge model it is 7.257 × 10-10 m at a time of  
1.69 × 10-5 s. 

Fig. 14 shows a comparison of wave propagation 
speeds in the direction of the y and z axes for the 
above models. 

 

Fig. 14 Course of velocities in the y-axis (a) and in the z-axis 
(b) for the Kirchhoff and Flüegge model at point T1 

 
It can be seen from Fig. 14 that, in contrast to the 

deformation propagation (Fig. 13), the speed in the 
Flüegge model is higher in both directions (y and z), 
i.e. it reaches the maximum positive value in a shorter 
time than in the Kirchhoff model. The positive 
maximum of 5.594 × 10-4 m.s-1 is reached by the speed 
v_ for the Kirchhoff model in time 4.10 × 10-6 s, for the 
Flüegge model in time 3.30 ×10-6 s the value is  
6.036 × 10-4 m.s-1. The speed w_  in the direction of the 
z axis is 2.421 × 10-6 m.s-1 at time 1.30 ×10-5 s for the 
Kirchhoff model, the speed value is  
2.236 × 10-6 m.s-1 at time t1 for Fluegge's model.  
02 ×10-5 s. The shape of the velocity curve v_ in the 
direction of the y-axis is similar for both models. In 
the direction of the z-axis it (w_ ) is also similar, with the 
fact that, as in the course of the deformation will show 
the influence of the reflected wave in the observed 
time. 

 Conclusion 

The article deals with the analytical calculation of 
the propagation of deformations and velocities in a 
thin circumferentially supported isotropic rectangular 
plate under impact loading. An impact force of 1 N 
(considered Heaviside jump) was applied to create  
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impact of a body radius of 2.5 mm with a spherical 
end to the geometric center of the face of the plate. 

A brief analytical solution is presented and its 
application for the calculation for each geometric 
model (Kirchhoff's and Fluegge's) was performed in 
the MATLAB program. Hooke's material model was 
considered for both geometric models. The result of 
the calculation is the course of deformations and 
velocities in the direction of the x, y, z axes at points 
T1, T2, which are at a distance of 20 mm from the 
center of the impact in the direction of the x and y axes 
respectively. 

From the evaluation of the results, it follows that 
for the Kirchhoff model the course of deformation 
and velocity as a function of time is essentially the 
same at both monitored points, slight deviations can 
be attributed to rounding during the calculation. 

In Fluegge's geometric model, which, in contrast 
to Kirchhoff's geometric model, considers the effect 
of shear on the resulting vertical displacement, the 
coincidence of the course of deformations and 
velocities as a function of time in both monitored 
points T1 and T2 is almost identical. The slight 
differences have the same causes as in Kirchhoff's 
geometric model. 

From the comparison of the propagation of 
deformations of both geometric models (see Fig. 13), 
it follows that the deformation according to the 
Flüegge model has time delay in the propagation of 
deformation according to the Kirchhoff model.  
Fig. 13a) shows the course of the deformation at point 
T1 (in the y axis), from which it is evident that not only 
a time shift occurs, but also a reduction in the 
amplitude of the deflection in the Flüegge model.  
This is due to the fact that the calculation also 
considers the effect of shear forces and therefore to a 
loss of energy. Regarding the displacement in the z-
axis (Fig. 13b), a slight delay is also evident. As for the 
amplitude of the displacement, it is slightly larger with 
the Flüegge model. These differences are considerably 
smaller than the differences in longitudinal 
displacement propagation, which is mainly a 
consequence of the shorter path (only 2 mm versus  
20 mm in the y-axis) and the slower wave propagation 
in the transverse direction. 

In contrast to the above, the velocity propagation 
is slower for Kirchhoff's geometric model than for 
Fluegge's (Fig. 14). As for the velocity amplitude, the 
Flüegge model has a higher velocity in the longitudinal 
direction (Fig. 14a), while the Kirchhoff model 
achieves higher values in the transverse direction  
(Fig. 14b). 
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