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Aiming at the problem of fault feature extraction and fault identification of rolling bearings, a fault 
recognition technology based on multi-scale entropy features and ensemble learning is proposed.  
First, the vibration signal is decomposed by using the variational mode decomposition method, and the 
cross-correlation coefficient method is used to reconstruct the signal for denoising. Then, to improve the 
efficiency of feature extraction of rolling bearings, a Refined Composite Multiscale Reverse Permutation 
Entropy (RCMRPE) based-feature extraction method is proposed. Third, a fault diagnostic model that 
leverages Stacking-CatBoost ensemble learning to improve the accuracy of rolling bearing defect 
identification is provided. Finally, relevant experiments are conducted for signal denoising, feature 
extraction and fault recognition. The proposed fault detection model and the RCMRPE entropy 
extraction method are compared with common machine learning models and common entropy 
extraction methods respectively. The experimental results show that the feature extraction error based 
on RCMRPE is small and can comprehensively reflect the actual faults of bearings; the fault diagnosis 
model based on Stacking-CatBoost ensemble learning has significantly better diagnostic performance 
than other models, with accuracy and recall rates above 99%. 

Keywords: Rolling bearing, Fault diagnosis, Feature extraction, Variational mode decomposition algorithm, 
RCMRPE, Stacking- CatBoost model 

 Introduction 

Many mechanical equipment regards rolling 
bearings as essential components, and the smooth 
operation of the equipment depends on the condition 
of rolling bearings. To maintain the safe operation of 
mechanical equipment, it is necessary to accurately 
diagnose the faults of rolling bearings. 

The application of vibration signal detection 
methods in rolling bearing fault diagnosis is currently 
one of the hotspots in bearing fault diagnosis.   
How to extract effective features from complex and 
noisy vibration signals is the key to fault diagnosis. 
Due to complex working conditions of mechanical 
equipment, vibration signals are mixed with 
interference noises, and signal denoising is principal. 
Common signal denoising methods include Kalman 
filtering, wavelet decomposition, and variational mode 
decomposition. Salunkhe et al. [1] used VMD 
technology to extract rolling bearing features and filter 
out data noise. Nassef et al. [2] used the VMD method 
to process the signals and identify the defects from the 
vibration signals of rolling bearings. Nouioua et al. [3] 
demonstrated the decomposition and envelope 
demodulation of VMD, which can efficiently identify 
a wide range of bearing faults. 

After noise reduction, the fault features of rolling 
bearings are still submerged in complex and redundant 

information, and it is crucial to extract fault features. 
Entropy based feature extraction can fully and 
accurately characterize the faults of rolling bearings. 
Based on fine composite multi-scale fuzzy entropy, 
Xu and Tse [4] used support vector machines for fault 
diagnosis and fault extraction of rolling bearings. 
Zhang Y. et al. [5] calculated the MPE of the optimal 
inherent mode function and reconstructed the signals 
of each mode MPE into feature vectors for fault 
identification. Zheng et al. [6] used fine generalized 
composite multivariate multi-scale reverse dispersion 
entropy to extract the fault characteristics of bearings 

Nowadays, deep learning methods are widely used 
for bearing fault diagnosis. Li et al. [7] suggested using 
the optimal ensemble deep migration network 
(OEDTN) to identify the faults of rolling bearings 
problems from unlabeled data. This method benefits 
from ensemble learning, domain adaptation, and 
parameter transfer learning. Zhang et al. [8] presented 
a group of self-learning convolutional auto-encoders 
(STL-CAEs). The model can effectively extract 
valuable faults from less labeled data. Imane et al. [9] 
used the random forest ensemble learning algorithm 
to train a model that can classify faults based on 
selected features. This method can effectively solve 
the problem of speed variation in bearing fault 
detection. Li et al. [10] proposed a reinforced 
ensemble deep migration-based learning network for  
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multi-source domain identification of faults. Diao et 
al. [11] used the algorithm of LeNet5 combined with 
Light GBM to diagnose bearing faults, which can 
achieve high diagnostic accuracy. Xia et al. [12] 
proposed a multi-level bearing fault detection 
approach based on ensemble learning and EMD.  
It combines the Bagging and AdaBoost algorithms to 
establish a multi-level fault diagnosis framework. 

To improve the accuracy of fault diagnosis for 
rolling bearings in mechanical equipment, this study 
provides a fault diagnosis method based on bearing 
vibration signals.VMD is used for signal denoising, 
and the features are extracted based on Refined 

Composite Multiscale Reverse Permutation Entropy 
(RCMRPE).To achieve accurate identification of 
bearing faults, a Stacking-CatBoost integrated learning 
based-fault diagnostic model is applied. 

 Methods 

To improve the accuracy of bearing fault diagnosis, 
VMD-RCMRPE-Ensemble Learning is used to 
extract feature information from nonlinear and non-
stationary rolling bearing fault signals. Its network 
structure is shown in Figure 1. 

 

Fig. 1 Network structure for fault diagnosis of rolling bearing 
 

The fault diagnosis method for rolling bearings 
based on VMD-RCMRPE-integrated learning first 
uses the VMD algorithm to decompose the vibration 
signal and effectively remove interference 
components. Then the signal is reconstructed using 
the cross-correlation coefficient method to 
reconstruct the signals for signal denoising. Based on 
the proposed RCMRPE feature extraction method, 
the RCMRPE entropy of different bearing fault state 
samples is extracted, effectively eliminating redundant 
information in the samples and constructing a feature 
sample set. The feature samples are randomly 
separated into two groups: training set and testing set. 
The training set is used to train the defect diagnostic 
model to obtain the trained model through Stacking 
ensemble learning. The trained fault diagnosis model 
is then applied to the testing set, and the output of the 
model is used to establish fault categories and damage 
levels. Finally, the output results are analyzed and the 
model is evaluated. 

 Signal Denoising Module 

The VMD algorithm is an emerging time-
frequency signal analysis and estimation algorithm. 
Compared with the EMD algorithm, it has a more 
solid foundation of mathematical theory, can 
maximize the suppression of multi-component 
aliasing and decompose signals more effectively. 

The working principle of variational mode 
decomposition can be understood as the process of 
establishing a mathematical model for variational 
constraint problems and continuously iterating to find 
the optimal solution. The constructed variational 
problem is to find the most suitable solution in the 
modal component functions of the original signal f (t) 
k u (k), so that the sum of the estimated bandwidth of 
each function is minimized, and the sum of all 
functions is equal to the original signal [13-14].  
Before solving the multiple modal functions, the 
variational modal problem is constructed. The specific  
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process is as follows: 
(1) Using the Hilbert transform to demodulate 

each modal function uk(t), the unilateral spectrum is as 
follows: 

 (1) 

Where:  
J(t)…The unilateral spectrum of each function,  ∗…The convolution operation. 
(2) Mixing each function spectrum with the 

estimated center frequency, multiplying the unilateral 

spectrum with the exponential term, the fundamental 
frequency band corresponding to each function 
spectrum is solved as follows: 

 (2) 

Where:  
q(t)…The fundamental frequency band of the final 

modal function.  
(3) Calculate the L2norm of the gradient and 

estimate the bandwidth of the signal:

 (3) 

 (4) The mathematical model of the constrained variational problem is obtained as follows: 

 (4) 

Where:  
f(t)…The original input signal,  
uk(t)…The modal component function. 
The above four computational technologies can be 

used to create mathematical models for variational 

problems.  To determine the optimal signal 
decomposition result, the variational problem is 
solved in the next step. 

The following mathematical model is obtained by 
transforming Eq.(4) into an unconstrained problem: 

 (5) 

The multiplicative operator alternating direction 
method is used to solve the quadratic optimization 
problem: 

 
(6) 

Where:  
α…The penalty factor.  
At the same time, the center frequency of the 

solution is also transferred to the frequency domain to 
obtain: 

 (7) 

Where:  ®v̄°p…The spectral center of each function.  
According to Eq. (6) and Eq. (7), λ is calculated as 

follows: 

 (8) 

Where:  
τ…The tolerance of noise.  

When Eq. (8) satisfies the following conditions, the 
iteration is stopped: 
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(9) 

Where:  
ε…The iterative convergence error. 
VMD transforms the decomposition process into 

a non-recursive mathematical model for solving 
variational problems. This signal decomposition 
method has a strong theoretical foundation. VMD 
uses multiple Wiener filter banks to analyze signals 
and has stronger robustness than EMD. At the same 
time, the convergence error ε is used to control the 
solution and the central frequency of each modal 
component, so that the sampling effect is much 
smaller than the empirical mode decomposition 
method, thereby reducing the impact of the sampling 
frequency on the algorithm. To some extent, VMD 
can prevent decomposition errors, allowing each 
modal component to fully highlight significant 
features in the signal, which helps to diagnose fault 
models in the future. 

Each modal component is generated after VMD 
decomposition, and then the signal is reconstructed 
using the correlation coefficient method. In the field 
of fault diagnostics, correlation coefficients are often 
used as a measure of signal tightness evaluation [15]. 
It can measure the closeness of one component 
containing relevant information to another 
component, and quantitatively express the degree of 
interdependence between two signals in numerical 
form. 

To further eliminate redundant information and 
improve the sensitivity of feature parameters to 
bearing fault conditions, effective components are 
selected based on the tightness between the 

components and the original signal. The correlation 
coefficient can be calculated as follows: 

 
(10) 

Where:  
u and ui…The sample signals,  
v(u)…The variance of u,  
v (ui)…The variance of ui,  
λi…The degree of association among the original 

signal and the signal component,  
λm…The threshold for selecting effective 

components. 
The degree of similarity between any two 

components can be precisely determined by their 
correlation coefficients with the original signal. 
Selecting highly correlated components for signal 
reconstruction can effectively eliminate irrelevant 
noise interference components, which is beneficial to 
subsequent feature extraction and fault diagnosis. 

 Feature Extraction Module 

According to the above noise reduction 
techniques, the noise signal in the original signal is 
basically suppressed. However, vibration signals are 
often mixed with other complex redundant 
information. It is necessary to extract the features of 
bearing vibration signals, eliminate redundant 
information, and obtain state feature quantities that 
can reflect corresponding faults. When diagnosing 
rolling bearing faults, the entropy algorithm-based 
feature extraction method is better in extracting the 
fault features of rolling bearings [16].

 

Fig. 2 The principle of the RCMRPE algorithm 
 
To enrich the extraction of failure state features 

from vibration signals, an RCMRPE feature extraction 
method is proposed to introduce the fine composite 
multi-scale method and the reverse dispersion entropy 
(RDE) method into the entropy calculation.  
The Refined Composite Multiscale Reverse 
Permutation Entropy (RCMRPE) is obtained by 
improving the Multiscale Permutation Entropy 
(MPE). 

The RCMRPE algorithm is a further refinement of 
MPE, and its principle is shown in Figure 2. 

Under the condition of a scaling factor s, s refined 
composite sequences are constructed sequentially 
from different initial starting points of the original 
time series u. That is, multiple refined sequences with 
different starting points and lengths are obtained 
continuously in a loop to ensure that the required 
results. The obtained RCMRPE entropy value can 
fully reflect the correlation between adjacent elements 
in the initial time series. When calculating the multi-
scale permutation entropy of each refined sequence, 
the probability pattern of each subsequence and the  

21

2
2

2

ˆ ˆ

ˆ

n n

k k

n
k

k

u u

u
ε

+ −
<

1

( , )

( ) ( )

1

i

i

i

k

m i

i

Cov u u

v u v u

k

λ

λ λ
=

 =


 =





June 2024, Vol. 24, No. 3 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489

e-ISSN 2787–9402

 

indexed on http://www.webofscience.com and http://www.scopus.com 496  

Euclidian distance of the embedded dimension 
factorial are used instead of the traditional entropy 
calculation method. The average RPE entropy of all 
refined sequences under s-scale is calculated to obtain 
the RCMRPE entropy at different scales.  
The following are the steps involved in the calculation: 

(1) Instead of the traditional coarse-graining 
method, a fine composite multiscale method is used 
to calculate the k-th coarse-grained sequence  
x(s) 

k ={x(s) 
k,1, x

(s) 
k,2,…}, based on the original signal u: 

 (11) 

Where:  
k=1,2,…s, 
j=1,2,…L/s,  
s…The selected scale factor,  
L…The data length. 
(2) For each scaling factor s, according to the 

principle of reverse permutation entropy, the entropy 
of each fine composite multi-scale reverse 
permutation is defined as follows: 

 (12) 

Where:  
Pi…The probability of subsequence occurrence,  
m…The embedding dimension of the 

reconstruction matrix. 
The RCMRPE entropy has a minimum value of 

zero. A high entropy number indicates a high degree 
of correlation between the components of time series. 

This statistical method of fine composite multi-
scale reverse entropy takes into account the complex 
change of time series at multiple scales, overcomes the 
shortcomings of traditional multi-scale coarse-
graining, and can dig deep into the relationship 
between adjacent elements in the time series, so as to 
reduce entropy calculation deviation for better feature 
extraction. 

 Fault Identification Module 

To accurately determine the faults of rolling 
bearings, a Stacking-CatBoost model is proposed, 
which adopts the Stacking ensemble learning 
framework structure and combines the multi-model 
primary classifier with the secondary classifier 
CatBoost for fault diagnosis.  

The Stacking ensemble learning model is a high-
level heterogeneous ensemble learning framework 
that integrates multiple optimal learning models [17]. 
Its heterogeneous model combination method 
provides a more optimal solution to actual complex 
classification problems [18-19]. Figure 3 shows the 
Stacking ensemble learning model structure. 

 

Fig. 3 Model structure of Stacking ensemble learning 
 

The integrated learning consists of two layers. At 
the beginning, the original training set is used to train 
many primary learning models, which forms the first 
layer of Stacking. The second layer model is further 
trained on this basis to obtain the final classification 
result. 

The Stacking-CatBoost model is constructed by 
combining the CatBoost model with the Stacking 
ensemble learning, and its structural block is shown in 
Figure 4. 

As shown in Figure 4, the Stacking-CatBoost 
ensemble learning consists of two layers: the first layer 
classification model includes five classification 
models: Extra Trees, Random Forest, Ada Boost, 
GBDT and SVM, and the second layer classification 
model include CatBoost. The following are the precise 
work steps: 

• Step 1: Use the original training set to train 
several primary learning models; 

• Step 2: Combine the prediction results of the 
first-layer primary learning model to form a 
new training set; 

• Step 3: Train and test the second-layer model 
using the newly created data set created by the 
first classifier. 

To minimize the risk of model overfitting, a new 
training set is generated using the K-fold cross-
validation method. Taking 5-fold cross-validation as 
an example, the specific principle is as follows:  
First, the training samples are decomposed into 5 
small samples for 5-fold cross-validation training of 
models. Then for each primary learning model, each 
model is trained5 times in sequence, retaining one-
fifth of the samples as the verification set for each 
training to validate the trained model, and outputting 
the prediction results of the validation set to form a 
new training set. After each training, the testing set is 
predicted, and the prediction results of the 5 testing 
sets are averaged to form a new testing set. Finally, the 
new sample sets constructed by each model are 
composed together, and the new sample set is the 
input sample of the secondary classification model. 

Unlike traditional single classification models, the 
Stacking ensemble learning method integrates 
multiple powerful and different learning models into a 
secondary classifier, and uses the classification  
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prediction results of these models as input.  
This improves the overall classification performance 

of the model and provides a new idea for fault 
diagnosis of complex rolling bearings. 

 

Fig. 4 Structure block diagram of the Stacking- CatBoost model 

 Results and analysis 

To confirm the feasibility of the previously 
proposed strategy, experiments on bearing defect 
detection methods using the bearing dataset provided 
by Case Western Reserve University in the United 
States are conducted. 

 Dataset 

The deep groove ball rolling bearing 6205-2RS 
JEM SKF at the driving end and the deep groove ball 
rolling bearing 6203-2RS JEM SKF at the fan end are 
the two types of bearings used in this data set.  
The rolling bearing data at the driving end serves as 
the basis for research and debate. 

The types of faults are classified based on their 
location and degree of damage. The dataset includes 

the normal state and 9 fault states of rolling bearings. 
The specific types are shown in Table 1.  

All experimental data are processed in the Matlab 
environment. As an example of a serious failure of a 
motor bearing at the driving end, Fig. 5 shows the 
time-domain waveforms of the normal and faulty 
states of the bearing.  

From Figure 5, the time-domain data waveforms 
of the rolling element fault state and the normal state 
of the bearing can be obtained. Both are chaotic multi-
component modulated pulse signals, and the 
characteristics of the vibration mechanism cannot be 
directly derived from the time-domain data. 
Therefore, effective denoising and feature extraction 
methods must be used to filter out useful information 
for subsequent bearing fault diagnosis.

Tab. 1 Fault types and labels of rolling bearings 

Labels Fault types Fault size (mm) 
1 normal 0 
2 Minor failure of inner ring 0.1778 
3 Minor failure of rolling elements 0.1778 
4 Minor failure of outer ring  0.1778 
5 Moderate failure of the inner ring 0.3556 
6 Moderate failure of rolling element  0.3556 
7 Moderate failure of the outer ring 0.3556 
8 Severe failure of inner ring  0.5334 
9 Severe failure of rolling element 0.5334 
10 Severe failure of outer ring 0.5334 
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Fig. 5 Time domain data of different fault samples 
 

 Signal Denoising Based on VMD 

Here, the fault data of rolling elements is used as 
an example for VMD decomposition. Figure 6 shows 
the decomposed time-domain diagram. 

Figure 6 demonstrates that the components 
decomposed by the VMD method are close to the 
original signal, and can accurately depict the fault 
features of signals. This indicates that the VMD 
method is superior in reducing signal noise and 
retaining details. 

Figure 7 shows the spectrum of each component 
after signal decomposition. 

 

Fig. 6 VMD decomposition time-domain diagram of rolling 
body fault data 

 

Fig. 7 VMD component spectrum of rolling element fault data 
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As shown in Figure 7, this method can greatly 
improve the modal mixing. The signal components 
obtained from VMD decomposition are smoothly in 
the spectrum space, and the frequencies of different 
signal components are different. There is no aliasing 
in the main frequency between the components.  
The results show that this method can effectively 
separate different frequency components from the 
original signal, obtain the characteristic frequency 
signals that can represent the fault impact 
component from the original signal, and eliminate 
the invalid interference components to achieve signal 
denoising [20]. 

The tightness between signal components and the 
original signal is determined by using the correlation 
coefficient method for each component after VMD 
decomposition. The effective signal components are 
then selected for signal reconstruction to remove 
noise and interference from the original signal. 

After calculation, the correlation coefficients of 
IMF1~IMF4 are 0.375, 0.265, 0.665, and 0.670 
respectively, and the threshold is determined by 
taking the average of 0.494.The correlation 
coefficients of Component 3 and Component 4 are 
greater than the threshold, indicating that 
Component 3 and Component 4 are closely related 
to the original signal and contain rich fault impact 
characteristic signals. Therefore, Component 3 and 
Component 4 are selected for signal reconstruction, 
and the remaining components are invalid signals 
and eliminated. 

To compare the reconstruction effect, the time-
domain waveforms before and after reconstruction 
are shown in Figure 8. 

 
Fig. 8 Time-domain comparison of rolling element fault 

signals before and after reconstruction 

It can be seen from Figure 8 that the noise 
interference component in the reconstructed signal is 
weakened. For example, between 0.8s and 1s, the 
magnitude of the burr interference information in 
the reconstructed signal significantly decreases, while 
the non-stationary fault influence characteristics 
increase. The results show that after VMD signal 
decomposition and selecting effective components 
for signal reconstruction, it has a good signal 
denoising effect in fault signal processing of rolling 
bearings. 

 Feature Extraction Based on RCMRPE 

The RCMRPE feature extraction technique is 
used to extract the vibration signal after denoising. 
To verify the effectiveness and feasibility of the 
feature extraction method based on RCMRPE, 
experiments using different entropy algorithms are 
used here to compare with the proposed algorithm. 
The commonly used entropy algorithms include 
Multiscale Approximate Entropy (MAE), Multiscale 
Fuzzy Entropy (MFE), Multiscale Permutation 
Entropy (MPE), and more. For comparison, two 
experiments are conducted: one is the feature 
extraction of bearing signals with the same fault size 
and different fault types under different entropy 
algorithms; the other is the feature extraction of 
bearings with the same fault types and different sizes 
of faults under different entropy algorithms. 
 
3.3.1 Comparative Experiments on Feature 
Extraction under Different Fault Types 

For bearing signals with the same fault size and 
different fault types, four entropy algorithms, MAE, 
MFE, MPF, and RCMRPE are used for feature 
extraction. Here, a fault signal with a fault size of 
0.1778mm is taken as an example. There are four 
fault types: normal, inner-ring fault, rolling element 
fault, and outer-ring fault. The scale factor ranges 
from 0 to 15, and four entropy algorithms are used 
to for experiments. The entropy standard deviation 
results of these algorithms are shown in Figure 9. 

According to Figure 9, the entropy calculation 
errors of the four entropy calculation methods are all 
less than 0.04. The entropy standard deviation of 
MAE fluctuates largely, followed by MFE and MPE. 
The fluctuation amplitude of the entropy standard 
deviation of RCMRPE is the smallest, with the most 
stable entropy. At low scales, the fluctuation range of 
the RCMRPE entropy errors of the four bearing 
states is small [21]. Inner-ring faults, rolling element 
faults, and outer-ring faults have steady entropy 
errors as the scale factor increases. 
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Fig. 9 Entropy error results of different entropy algorithms under different fault types 
 
3.3.2 Comparative Experiments on Feature 
Extraction under Different Sizes 

For bearing signals with the same fault types and 
different fault sizes, four entropy algorithms, MAE, 
MFE, MPF, and RCMRPE, are used for feature 
extraction. Taking the inner-ring fault as an example, 
the fault sizes are 0mm, 0.1778mm, 0.3556mm, and 
0.5334mm respectively. The entropy standard 
deviation curve of each entropy value algorithm is 
shown in Figure 10.  

It can be observed from Figure 10 that under 
different fault sizes, the errors of MAE, MFE, MPE 

and RCMRPE are all lower than 0.015, but that of 
MAE and MPE changes significantly. Especially when 
the fault size is 0.1778mm, the entropy error of MAE 
declines linearly with unstable variation. In the 
entropy error distribution curve of RCMRPE, the 
error value distribution of the four-fault size states is 
relatively stable, and the fluctuation amplitude of the 
error in each state is relatively small. This indicates that 
the RCMRPE entropy value calculation method has 
small errors in the feature extraction process and can 
fully reflect the actual fault information of motor 
bearings. 
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Fig. 10 The entropy error results of different entropy algorithms under different fault sizes 

 Fault Identification based on Stacking- 
CatBoost Ensemble Learning 

To investigate the performance of the Stacking-
CatBoost ensemble learning model, the single models 
such as Extra Trees (ET), Random Forest (RF), Ada 
Boost, Gradient Boosting Decision Tree (GBDT), 
and Support Vector Machine (SVM) are selected for 
comparison with the Stacking-CatBoost model [22-
26].  

After feature extraction, the feature set is separated 
into a training set and a testing set with a ratio 7:3 for 
model training and testing. Two experiments are 
conducted: one is to identify faults on signals of the 

same fault size under the same working conditions, 
and the other is to identify faults on signals of the 
same fault size under different working conditions. 
 
3.4.1 Model-Evaluation Index 

This paper mostly employed Accuracy, Precision, 
Recall, F1_Score, Kappa coefficient, and Jaccard coefficient as 
model evaluation indexes, and calculated as follows: 

 (13) 

Where:  
TN…The accurate forecast of a negative sample, 

TP TN
Accuracy

TP TN FP FN

+=
+ + +
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FP…The incorrect prediction of a positive sample, 
FN…Wrong prediction of a negative sample,  
TP…The positive sample with the correct 

prediction. 

 (14) 

 (15) 

(16) 

 (17) 

Where:  
c…The total number of categories, 
n…The total number of samples,  
ai…The true number of samples in the i category,  
bi…The predicted number of samples in the I 

category,  
P0…The overall classification accuracy. 
The Jaccard coefficient measures the similarities and 

differences between samples by predicting the 

distance between the label and real label of the 
samples. The larger the Jaccard coefficient, the higher the 
similarity between the two samples. 
 
3.4.2 Fault Diagnosis Experiment under the Same 
Working Conditions 

To further study the superiority of the bearing fault 
diagnosis method based on the Stacking-CatBoost 
model, the models, Extra Trees, Random Forest, Ada 
Boost, GBDT, SVM, and Stacking-Cat Boost are used 
to classify the feature sample set. 

Under the same working conditions and different 
faults, the fault identification experiments based on 
different models are carried out. Here, the working 
condition is selected with a load of 2 HP, and 300 
samples are randomly selected for fault diagnosis 
experiments. The diagnosis results are shown in 
Figure 11. 

It can be seen from Figure 11 that the fault 
diagnosis effect of Stacking-Cat Boost model is the 
best. There are 9 kinds of faults identified by the 
model completely and only a few parts of 1 kind of 
faults (class 5) are incorrectly identified. The error rate 
of ET model is relatively high, and the 5th, 6th, 9th 
and 10th faults all have diagnostic errors. The error 
rate of RF model mainly focuses on the 2th, 5th, 7th, 
and 10th faults. For the Ada Boost model, there are 
errors in the identification of class 2, 5, 6 faults, while 
class 10 errors are not correctly identified. The fault 
diagnosis error rates of GBDT and SVM models 
mainly are mainly concentrated in the 5th and 9th, 
10th faults. 

Tab. 2 Performance indicators of various fault diagnosis models under the same working condition 

Model Accuracy Accuracy Recall F1 value 
Kappa 

coefficient 
Jaccard 

coefficient 

ET 0.9533 0.9531 0.9553 0.9516 0.9479 0.9108 

RF 0.9667 0.969 0.9659 0.9667 0.9628 0.9355 

Adaboost 0.8800 0.8379 0.8814 0.8499 0.8666 0.7857 

GBDT 0.9567 0.9618 0.9584 0.9552 0.9517 0.9169 

SVM 0.94 0.9426 0.9606 0.9414 0.9332 0.8868 

Stacking -
CatBoost 

0.9900 0.9900 0.9900 0.9895 0.9888 0.9802 

 
It can be seen from Table 2 that under different 

fault types, the evaluation indicators of the Stacking-
CatBoost model are all greater than 98%.  
The accuracy, precision and recall rates are almost 
99%, and F1 and Kappa coefficient are also greater 
than98.5%. The fault identification results are 
significantly higher than the single models such as 
Extra Trees, Random Forest, and AdaBoost. It proves 

the feasibility and effectiveness of defect diagnosis 
technology based on the Stacking-CatBoost model.  
Its diagnosis results are more accurate, with better 
generalization ability and stronger classification 
performance. 

The performance indicators of each model are 
shown in Table 2. 
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TP FP
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Fig. 11 Confusion Matrix for Fault Diagnosis of different models under the Same Operating Condition 
 

3.4.3 Fault diagnosis experiments under different 
working conditions 

The data from four distinct working conditions is 
used to further confirm the effectiveness of the model 

under various working conditions and the same faults. 
Taking the defect size of 0.1778mm as an example, 
Table 3 shows its four possible operating states.

Tab. 3 Four different working conditions of the same fault size 

Fault size/mm Motor load /HP Motor speed /(r/min) 

0.1778 0 1797 

0.1778 1 1772 

0.1778 2 1750 

0.1778 3 1730 
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The faults of different models are identified under 
the same working conditions and different fault sizes. 

1,000 samples are randomly selected for testing, and 
the diagnostic results are shown in Figure 12. 

 

Fig. 12 Confusion Matrix for Fault Diagnosis of different models under Different Working Conditions 
 

According to Figure 12, under different working 
conditions and the same fault size, the fault diagnosis 
performance of the Stacking-Cat Boost model is the 
best. The accuracy of the Stacking-CatBoost model 
remains greater than 99%, which also verifies the 

effectiveness of the Stacking-Cat Boost ensemble 
learning method. 

The performance indicators of each model are 
shown in Table 4.

Tab. 4 Performance indicators of various fault diagnosis models under different working conditions 

Models Accuracy Accuracy Recall F1  
Kappa 

coefficients 
Jaccard 

coefficients 

ET 0.9500 0.9470 0.9480 0.9473 0.9328 0.9048 

RF 0.9667 0.9658 0.9646 0.9647 0.9552 0.9355 

Adaboost 0.9333 0.9413 0.9353 0.9365 0.9104 0.8750 

GBDT 0.9750 0.9755 0.9762 0.9757 0.9666 0.9512 

SVM 0.9583 0.9540 0.9537 0.9537 0.9434 0.9200 
Stacking -
CatBoost 0.9917 0.9922 0.9922 0.9921 0.9889 0.9835 
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According to Table 4, under different working 
conditions and the same fault size, compared with 
other single learning models, the Stacking- CatBoost 
model has the most ideal fault diagnosis effect, with 
the evaluation indicators such as accuracy and 
precision are all greater than 0.99. It indicates the 
ability of the Stacking-CatBoost model to determine 
the faults of rolling bearings in various operational 
scenarios. 

 Conclusions 

To ensure safe operation of rolling bearings in 
mechanical equipment, a bearing failure detection 
method based on multi-scale entropy feature and 
ensemble learning is proposed. The conclusions are 
drawn as follows: 

• (1) The VMD method is used to decompose 
the fault signal of a rolling bearing.  
According to the correlation coefficient 
method, the effective component is screened 
to reconstruct the signal. The invalid 
component is eliminated for signal denoising, 
which lays a foundation for the subsequent 
feature extraction.  

• (2) The fault features of bearings are extracted 
using the RCMRPE entropy method, and 
compared to other multi-scale entropy 
algorithms such as MAE, MFE, and MPE. 
The experimental results show that RCMRPE 
entropy has the smallest standard deviation 
and the most stable fluctuation amplitude, 
which can fully reflect the actual faults of 
motor bearings. 

• (3) The Stacking-CatBoost model is used for 
bearing fault diagnosis, and its accuracy and 
recall rate are both greater than 99%, which is 
significantly better than other single models. 
To this end, the model has higher accuracy 
and more reliable and effective performance. 
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