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Engineering polymers like PMMA have increasingly replaced traditional materials where feasible, with 
CO2 laser cutting gaining attention for its high quality and speed in processing these materials. Precise 
cuts are essential for product accuracy, with kerf width being a key quality attribute for ensuring the final 
product's quality. This study focuses on the impact of three process variables: stand-off distance, laser 
power, and cutting speed, on the kerf width in CO2 laser cutting of PMMA. A full-factorial experiment 
systematically varies process parameters to understand their individual and interaction effects on the 
cutting process. The kerf width is measured as an indicator of precision to evaluate the quality of the 
laser cuts. In order to address the non-linear relationships between these process parameters and kerf 
width, several machine learning models were utilized. Performance comparisons indicated that the Arti-
ficial Neural Network (ANN) model provided the highest accuracy, with R² values of 0.98 for the vali-
dation dataset and 0.95 for the testing dataset. The optimized ANN model is a robust tool for parameter 
optimization, determining optimal settings to achieve the desired kerf width and ensure productivity. 
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 Introduction 
In recent years, engineering polymers have increa-

singly replaced traditional materials in various in-
dustrial applications, thanks to significant enhance-
ments in their physical properties and performance. 
Furthermore, the cost efficiency of mass-producing 
these polymers has improved [1-3]. One such polymer 
is polymethylmethacrylate (PMMA), known for being 
a hard, tough, and transparent thermoplastic with a 
high refractive index and excellent resistance to scrat-
ching, aging, and weathering [4]. PMMA is a 
lightweight, shatter-proof alternative to glass and is 
widely used in products such as automotive compo-
nents, optical lenses, sensors, electronics, and biome-
dical devices [5-11]. 

Laser cutting of polymers has gained significant at-
tention compared to traditional cutting methods due 
to its superior product quality, high cutting speed, and 
reliability [12]. CO2 laser cutting is particularly 
effective for processing PMMA, as CO2 lasers emit at 
a wavelength of 10.6 µm, which is highly absorbed by 
PMMA, allowing for efficient cutting with minimal 
thermal damage to the surrounding material [13]. Ad-
ditionally, PMMA's low thermal diffusivity ( 7 ∙
10ି଻݉ଶ ⁄ݏ ) and low sublimation point (300°C) 
further enhance the cutting process, ensuring high-qu-
ality cuts and reduced cutting time. The absorbed laser 

energy is converted into heat, causing the PMMA to 
sublimate instantly, and the resulting vapor is removed 
with the help of an assisting gas. 

Achieving precise cuts is crucial for maintaining 
the dimensional accuracy and structural integrity of 
the final product. The dimensional accuracy as well as 
the affected surface zone of the cut has been previ-
ously researched and compared to other cutting tech-
nologies [14].  One important cut quality metric is the 
kerf, defined as the slot created by material removal, 
with the width of this slot known as the kerf width 
(KW) [15]. The kerf width is a critical parameter in la-
ser cutting processes, as it directly impacts the dimen-
sional accuracy of the cut parts and the overall quality 
of the finished product. Variations in kerf width can 
lead to deviations from desired dimensions, affecting 
the fit and function of the components [16-17]. The-
refore, controlling and predicting kerf width is essen-
tial for ensuring the precision and reliability of laser-
cut PMMA components. 

The precision and quality of laser cutting are criti-
cally influenced by specific input parameters. This re-
lationship has been thoroughly investigated in studies 
[18-24] that examine the influence of the parameters 
on cutting region temperature, surface structure, edge 
quality and operating cost and the published results 
demonstrate the direct impact of these variables on 
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the cutting performance and material integrity. The 
process parameters, including stand-off distance 
(SOD), laser power (P), and cutting speed (v), signifi-
cantly influence the kerf width during CO2 laser 
cutting [25-26]. Selection and setting of the optimal 
parameter of the laser cutting process to obtain high-
quality cuts are of great importance. However, the re-
lationship between these parameters and kerf width is 
complex and nonlinear, necessitating advanced pre-
dictive models for accurate forecasting under varying 
conditions [27]. Traditional statistical approaches such 
as Taguchi and response surface methods have been 
used to select and optimize laser cutting parameters 
[21], [28]. Nevertheless, these methods have limitati-
ons: the Taguchi method does not clearly identify the 
most influential parameter, and the response surface 
approach may struggle with highly nonlinear systems. 
Artificial intelligence (AI) tools, particularly machine 
learning (ML) techniques, offer a robust alternative 
due to their ability to handle nonlinear systems, ro-
bustness, and generalization capabilities [29]. Con-
sequently, machine learning has emerged as a valuable 
tool for nonlinear modeling in laser cutting processes 
[30-31]. Machine learning methods for laser cutting 
have been explored in literature for process planning 
[32], optimizing parameters to improve quality [33] 
and efficiency [34], and minimizing defects [35]. 

There exist a number of literature works on em-
ploying machine learning for predicting kerf attri-
butes. Anjum et al. [36] applied the Gaussian process 
regression (GPR) technique to predict kerf width and 
kerf depth in the PMMA micro-milling process with a 
CO2 laser machine, using the parameters number of 
passes, incident energy, laser power, and cutting 
speed. Kusuma et al. [30] compared the performance 
of three ML models—support vector regression 
(SVR), random forest (RF), and extreme learning ma-
chine (ELM)—for kerf width prediction in pulsed la-
ser cutting, finding that the RF model performed the 
best. Alhawsawi et al. [37] investigated the effects of 
laser power and cutting speed on kerf open deviation 
(KOD), comparing three ML models: a conventional 
artificial neural network (ANN), a hybrid neural 
network–humpback whale optimizer (HWO-ANN), 
and a hybrid neural network–particle swarm optimizer 
(PSO-ANN). Najjar et al. [38] used Long Short-Term 
Memory (LSTM) networks combined with the Chimp 
Optimization Algorithm (CHOA) to predict kerf qua-
lity characteristics in laser cutting of basalt fiber-rein-
forced polymer composites, considering different pro-
cess parameters. Additionally, authors have employed 
monitoring setups on existing machines to indirectly 
observe kerf attributes [39]. For instance, Ranwu et al. 
[40] monitored the nanosecond ultraviolet laser 
cutting of carbon fiber-reinforced polymer using 
acoustic emission, showing that the emission signal 
correlates with kerf width in both time and frequency 
domains. Vasileska et al. [15] used a coaxial camera to 

monitor kerf width and correlated it to the focusing 
position. Balarin de Andrade et al. [41] implemented a 
piezoelectric transducer during the laser cutting pro-
cess of ceramic, demonstrating that the signals align 
with the kerf width. The extensive body of research 
on kerf width modelling in relation to process para-
meters highlights the critical need for precision in the 
laser cutting process, ultimately aiming to achieve 
effective industrial objectives. 

This research study contributes to the existing lite-
rature on modelling kerf width - a critical quality attri-
bute of the laser cutting process - by examining its re-
lationship with processing parameters when cutting 
PMMA, a widely used engineering plastic. Utilizing 
modern machine learning techniques for process mo-
delling, the study begins by detailing a full-factorial ex-
perimental design where three variable parameters are 
defined: stand-off distance, laser power, and cutting 
speed. The subsequent section describes the measure-
ment procedure for the obtained kerf widths. A statis-
tical analysis is then conducted to understand the in-
fluence of these factors on kerf width, followed by a 
comparison of various machine learning methods for 
modelling the relationship. 

 Experimental methodology 
 Experimental setup 
The experiments were performed on a laser ma-

chine equipped with a continuous CO2 laser capable 
of a maximum output power of 130 W. The laser 
beam was directed through an optical system of lenses 
and ultimately focused on the material surface using a 
focusing lens with a 20 mm diameter. This setup pro-
duced a laser spot diameter of 0.13 mm at a focal len-
gth of 63 mm. Compressed air was supplied through 
a 1 mm diameter nozzle, aligned coaxially with the la-
ser beam, to remove molten material and protect the 
lenses from emitted gases. 

 Experimental design 
A full-factorial experiment with three repetitions for 
each combination of factors was conducted on a 3 mm 
thick PMMA sheet. The variable factors were cutting 
speed (v), laser power (P), and stand-off distance 
(SOD), as these significantly influence variations in 
kerf width as a vital quality attribute of the cut of as 
shown by empirical studies as well as theory [42]. In 
the experiment each factor was varied on three levels, 
selected based on a preliminary study not detailed here 
for brevity. All the factors’ combinations were selected 
such that the energy input is sufficient to result with a 
cut. With an SOD of  8 mm, the laser spot was focused 
on the plate's surface, allowing examination of the kerf 
width when the laser is focused both above and below 
the surface. Compressed air was used as assisting gas 
in the process. The variable factors and their levels are 
summarized in Table 1.
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Tab. 1 Variable factors and their levels employed in the experiment 

Variable factors 
Level 

Low Medium High 

Stand-off distance [mm] 7 8 9 

Laser power [W] 30 40 50 

Cutting speed [mm.s-1] 15 20 25 

 
The experiment consisted of a series of straight-

line cuts, each equal to 40 mm in length, performed 
with a certain combination of parameters. The cutting 
length of 40 mm was selected to ensure that, after re-
moving the initial and ending part of the cut where the 
laser movement is accelerated and decelerated, there is 
a sufficiently long middle region of the cut where the 
laser operates at its nominal speed providing a consis-
tent cut for accurate measurements. A total of 81 spe-
cimen cuts were performed. 

 Measurement phase 
The cuts were collected in rectangular samples, 

each containing 9 straight-line cut. An example of 
rectangular sample obtained from the experiment is 
shown in Fig. 1 c). Varying kerf widths were produced 
depending on the process parameters employed for 
each cut, which were also visually noticeable as can be 

observed in the Figure. To accurately quantify the kerf 
width, the cut specimens were measured with an opti-
cal microscope from the manufacturer Carl Zeiss, 
Lena, Germany, equipped with a magnification lens 
allowing 10 times magnification. The measurement 
procedure involved using a microscope camera soft-
ware tool called ImageView (Carestream, Rochester, 
NY USA) to create a line in the contrast region and 
measure the distance to the opposite contrast point, 
which represented the dimension of interest. Three 
measurements of the kerf width were taken for each 
cut line at different positions within the region where 
the cutting speed was constant, as shown on Fig. 1. 
On the Figure under b) the three measurements are 
denoted with KW 1, KW 2, and KW 3. The final kerf 
width used for further analysis and modelling was the 
average of these three measurements. 

 
Fig. 1 Schematic representation of: a) the upper kerf width; b) the three taken measurements of the kerf width; c) rectangular sample 

with 9 straight-line cuts 

 Results 
 Results from measurement and statistical 

analysis 

The results from the kerf width measurement are 
shown in Fig. 2. Interval plots are displayed with a 
95% confidence interval for the mean kerf width me-
asured in millimetres [mm] for each group. These 
groups were processed using different laser power and 
cutting speeds and are presented in three separate 
graphs based on the stand-off distance (SOD) used in 
the experiment. A rising trend in kerf width is obser-
ved as a function of both the SOD and laser power, 

while higher cutting speeds result in a narrower kerf 
width. These trends can be explained by the mecha-
nics of material removal during laser machining of 
PMMA. Increased laser power contributes to more 
heat to the workpiece during laser processing, leading 
to a larger zone of melting and evaporation, as well as 
larger heat affected zone around the cutting kerf. This 
is a well-documented phenomenon in experimental 
works in relevant literature studies. For instance, Son 
et al. [43] specifically correlated volume energy with 
kerf dimensions, highlighting the relationship between 
increased laser power and wider kerf widths. The 
increase in kerf width with increasing SOD can be  
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attributed to changes in beam focusing and energy dis-
tribution when the beam interacts with the material at 
a different distance. At higher stand-off distances, 
beam divergence increases, causing a slight increase in 
laser spot size. Consequently, the heat-affected zone 
(HAZ) and material removal are greater, leading to a 
wider kerf width. Regarding cutting speed, the kerf 
width decreases with increasing cutting speed. This 
trend is due to the reduced interaction time between 
the laser beam and the material, which limits the 
amount of heat input and thus confines the melting 
and evaporation zones. Consequently, higher cutting 
speeds result in less material removal and a narrower 
kerf width. This inverse relationship between cutting 

speed and kerf width underscores the importance of 
optimizing cutting parameters for precise laser machi-
ning but also keeping in mind the production time and 
the process productivity. 

Fig. 3 presents a contour plot illustrating the varia-
tion of kerf width values as a function of the proces-
sing parameters. The contour lines are marked with 
specific kerf width values, providing a clear visual re-
presentation of how changes in parameters affect the 
kerf width. This plot is particularly valuable for opti-
mizing the laser cutting process since by examining the 
contour lines, one can identify the parameter combi-
nations that yield the desired kerf width. 

 
Fig. 2 Interval plots with 95% confidence interval for the mean of each group of kerf width, where: a) SOD=7 mm; b) SOD=8 

mm; c) SOD=9 mm; The colour legend for the v [mm/s] applies to all plots 

 
Fig. 3 Contour plots of the kerf width values as a function of the processing parameters, where: a) SOD=7 mm; b) SOD=8 mm; 

c) SOD=9 mm; The values of the contour lines are in [mm] unit 
 
The trends of the kerf width as a function of the 

three considered factors are illustrated in the main 
effects plot in Fig. 4 a), highlighting the main trends in 
kerf width values in relation to the process parameters. 
As previously concluded and now also depicted in the 
main effects plot, an increase in P and SOD leads to 
an increase in kerf width, while an increase in v results 
in a decrease in kerf width. 

In Fig. 4 b), the interaction plot reveals that higher-
level interactions between the factors are non-signifi-
cant. This indicates that each factor independently 
affects the kerf width, and the combined effects of 
these parameters at higher levels do not substantially 
influence the kerf width. Consequently, these higher-
level interactions can be excluded from the model for 

predicting kerf width, as they do not contribute signi-
ficantly to its variation. 

In order to justify the relative importance and sig-
nificance of process parameters, analysis of variance 
(ANOVA) was performed on the experimental data 
and the results are shown in Table 2. ANOVA results 
confirm the qualitative observations from the main 
effects plot for KW as it is determined that all para-
meters are statistically important for KW as indicated 
by their high F-values and low P-values under the sig-
nificance threshold level of 0.05. SOD emerged as the 
most influential factor, followed by laser power and 
cutting speed. Therefore, to achieve the desired preci-
sion in KW, it is essential to select appropriate values 
for these parameters. 
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Fig. 4 a) Main effects plot; b) Interaction plot of the factors on the kerf width 

Tab. 2 Results from ANOVA analysis 

Source DF Adj SS Adj MS F-Value 
P-

Value 
Regression 3 0.172408 0.057469 201.40 0.00003 
SOD [mm] 1 0.116062 0.116062 406.73 0.00003 
v [mm.s-1] 1 0.019032 0.019032 66.70 0.00042 

P [W] 1 0.037314 0.037314 130.77 0.00016 
Error 77 0.021972 0.000285   
Total 80 0.194380    

 Results from modelling with machine lear-
ning methods 

Based on the results from the statistical analysis of 
the interaction between the factors and the output, the 
three factors without their higher order interactions 
are considered as inputs in the machine learning mo-
del for predicting the kerf width. To test the model's 
performance, 15% of the dataset was reserved as a tes-
ting set. This was done to evaluate the model's ability 
to generalize to new, unseen data, ensuring its predicti-
ons are reliable and not overfitted to the training data. 
Several regression machine learning models were eva-
luated to identify the most accurate and reliable model 
for predicting kerf width. As a metric for evaluating 
the fitting accuracy of the models, the coefficient of 
determination (R²) was used. By comparing their re-
sulting R² values for both the training and testing 
phases, as compared in Fig. 5, it was ensured that the 
chosen model not only fits the training data well but 
also generalizes effectively to new, unseen data. 

Among the different models tested, the Artificial 
Neural Network (ANN) model demonstrated the 
highest R² values, achieving 0.98 for the training phase 
and 0.95 for the testing phase. According to the Faus-
ett [44], the back propagation network with one hid-
den layer is adequate for a large number of applicati-
ons. So, in this study, the network with one hidden 
layer has been used. To optimize the ANN model, 
configurations with different numbers of neurons 
were tested. The best performance evaluated with the 
mean squared error (MSE) was observed with an 

ANN model consisting of one hidden layer and five 
neurons. This configuration was chosen not only for 
its accuracy but also for its balance between perfor-
mance and complexity. While increasing the number 
of layers and neurons could potentially improve the 
results, achieving 98% accuracy was deemed suffi-
cient, avoiding unnecessary complexity in the model. 
The ANN network has been trained with the experi-
mental data by using Levenberg-Marquadt (LM) algo-
rithms because the LM algorithm is fastest and least 
memory consuming one [45]. To evaluate the model 
training process, cross-validation is an excellent met-
hod for determining how well the statistical results will 
apply to a completely new data set. Consequently, five-
fold cross-validation was performed in these experi-
ments. 

Fig. 6 a) presents a scatter plot of the true versus 
predicted values of the kerf width using the ANN mo-
del, providing a visual assessment of the model's pre-
dictive accuracy. The training and testing datasets are 
distinguished by different colours. The plot demon-
strates that the data points are closely aligned around 
the reference line in its proximity, indicating that the 
model's predictions closely match the actual values. 
Furthermore, a histogram depicting the distribution of 
the residual values for both the training and testing da-
tasets is presented in Fig. 6 b). The residuals represent 
the differences between the actual measured kerf 
width and the predicted values from the ANN model, 
indicating the prediction errors. The histogram 
illustrates that these errors follow a near-normal 
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distribution, clustering around the zero value. The lack 
of discernible patterns in the residuals' variation and 
the absence of significant outliers suggest that the cho-
sen model performs well. This normal distribution of 

errors indicates that the model's predictions are unbi-
ased and that the errors are randomly distributed, 
further confirming the model's robustness and  
reliability. 

 
Fig. 5 Comparison of validation and testing accuracy with R2 metrics of ML regression models 

 
Fig. 6 a) Scatterplot of true values of KW versus predicted values of KW with ANN model; b) Histogram of the residuals from the 

ANN modelling 
 
By utilizing this model, one can determine the op-

timal set of parameters that yield the desired kerf 
width while simultaneously considering productivity 
and energy efficiency. To achieve this, the model can 
be integrated with an optimization method for appro-
priate selection of process parameters. This involves 
defining objective functions that account for not only 
the precision of the kerf width but also factors like 
cutting speed, which directly impacts productivity, and 
laser power, which influences energy consumption. By 
setting constraints and goals for these parameters, the 
model can be used to explore the parameter space and 
identify combinations that meet the desired criteria. 
The development of integrated ANN with opti-
mization method will be a subject of future research. 

 Conclusions 
This research study examined the influence of 

three significant process variables (stand-off distance, 
laser power, and cutting speed) on the kerf width, as a 
quality attribute in the laser cutting process of PMMA. 
With a designed experiment and conducted statistical 
analysis it was shown that all three parameters signifi-
cantly impact the kerf width, where their interaction 
was non-significant. Of the parameters studied, it was 
found that the stand-off distance is the most signifi-
cant, followed by the laser power and the cutting 
speed. Several machine learning models, suitable for 
their ability to uncover non-linear relationships, were 
employed to predict the kerf width as a function of the  
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tested process variables. Their performances were 
evaluated using the R² metric, with the Artificial Neu-
ral Network (ANN) model outperforming the others 
on both the validation (R2 = 0.98) and testing (R2 = 
0.95) datasets. 

The developed model can be utilized for parameter 
optimization, enabling the determination of optimal 
settings that achieve the desired kerf width while con-
sidering productivity and energy efficiency. It can be 
concluded that the proposed approach can be effi-
ciently used for the mathematical modeling and analy-
sis of the effects of process parameters on the cut qu-
ality characteristics, as well as contribute to better un-
derstanding of the CO2 laser cutting process. Future 
research should expand this approach to other mate-
rials and thicknesses and explore the integration of 
real-time monitoring systems to further refine and op-
timize the laser cutting process. 
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