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Manufacturing inaccuracies in vehicle suspension systems inevitably lead to uncertainties in the para-
meters of their structural components. Simultaneously, the road excitation impacting nonlinear vehicle 
systems exhibits pronounced randomness and time-variant characteristics. Consequently, it is crucial to 
conduct a stochastic dynamics analysis on nonlinear suspension systems, taking into account these un-
certain factors. In this paper, a seven-degree-of-freedom (7-DOF) nonlinear suspension system dynamics 
model has been established. The stochastic process of road irregularities is simulated using the harmonic 
superposition method. Moreover, based on the direct probability density integral method, the stochastic 
dynamic equations of the nonlinear suspension system and their corresponding solution strategies have 
been developed and explored. Through MATLAB, the time-varying probability density function of the 
vibration response for a nonlinear vehicle suspension system was calculated under the combined effects 
of stochastic road irregularity excitation and random coupling of system structural parameters. Additio-
nally, analyses were conducted on how different coefficients of variation and the intensity of nonlinearity 
in the suspension system influence the probability density of the output body displacement of the nonli-
near vehicle suspension system. The research outcomes demonstrate that the direct probability density 
integral method offers superior efficiency and accuracy when computing nonlinear vehicle suspension 
systems. Furthermore, altering the coefficients of variation for various system parameters reveals that as 
these coefficients increase, the disparity in the probability density of body displacement becomes more 
pronounced, leading to more intense vehicle vibrations. Under soft nonlinear conditions with lower su-
spension spring stiffness, the probability density function of body displacement shifts slightly to the right 
with minimal change. However, under strong nonlinear conditions, body displacement significantly 
increases, resulting in diminished vibration isolation capabilities of the suspension system. This leads to 
severe jolts and a noticeable decline in ride comfort during vehicle operation. 

Keyword: Direct probability density integral method, The road is not smooth, Harmonic superposition method, 
Nonlinear vehicle suspension system 

 Introduction 
When a vehicle travels at high speeds over uneven 

surfaces, it encounters excitations from the road's irre-
gularities, leading to vibrations and noise. This sto-
chastic vibration, transmitted through the wheels to 
the vehicle body, can result in intense shocks that ac-
celerate wear between components, reducing their ser-
vice life and impacting the vehicle's handling stability. 
For the driver, continuous jolts can cause fatigue and 
distract attention, potentially leading to traffic acci-
dents and causing loss of life and property [1]. 
Currently, many vehicles employ hydraulic dampers 
that exhibit certain levels of nonlinearity. When a ve-
hicle is traveling at high speeds, a higher spring stiff-
ness is required to ensure handling stability; conver-
sely, at low speeds, a lower spring stiffness is needed 
to maintain ride comfort, indicating a nonlinear cha-
racteristic of the springs. Additionally, the nonlinearity 

is also present in vehicle tires due to the effects of in-
flation pressure, aging, wear, and temperature [2]. Mo-
reover, during the production process of vehicles, due 
to the negligence of staff and measurement and preci-
sion errors of processing machinery, it is inevitable 
that there will be uncertainties in parameters such as 
sprung mass, unsprung mass, suspension stiffness, su-
spension damping, and tire stiffness [3-4]. In addition, 
due to the complexity of road conditions, vehicles will 
receive random excitations from different road sur-
faces during driving. Therefore, studying the nonlinear 
and stochastic coupling dynamic response and control 
mechanism of vehicles is important for comfort. 

The stochastic vibration analysis of nonlinear vehi-
cle suspension systems mainly involves solving the 
statistical regularities of the system's output random 
response. It analyzes the influence of the system's ex-
ternal environment and its own parameters on the 
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safety and comfort of vehicle driving, ensuring more 
stability and safety when the vehicle is driving at high 
speed. Niu and Wu [5] established a nonlinear model 
of single-degree-of-freedom suspension using a power 
function polynomial and studied the dynamic re-
sponse of the system under bounded noise and C-level 
road excitation, respectively. Based on the pseudo-ex-
citation method and equivalent linearization techno-
logy, Hua et al. [6] constructed a stable iterative 
scheme and used this method to analyze the power 
spectral density of vehicle responses under different 
speeds and different nonlinear hysteretic springs. Jia et 
al. [7] established a five-degree-of-freedom nonlinear 
vehicle model, considering the randomness of structu-
ral physical parameters in space and the randomness 
of acting loads in time. The response of the nonlinear 
system under random process excitation was analyzed 
by solving the Lyapunov equation. Yi et al. [8] esta-
blished the dynamic equation of vehicle random vib-
ration, considering the randomness of vehicle structu-
ral parameters. The system's phase response variation 
was used to reflect the influence of compound rando-
mness on the vibration response of the vehicle 
structure. However, it only analyzed the frequency do-
main response of the linear system, while the vibration 
of actual vehicles is mostly a nonlinear vibration pro-
blem. The above-mentioned studies rarely consider 
the coupled vibration of the vehicle body under the 
dual randomness of vehicle nonlinearity, road rou-
ghness, and system structure randomness. 

Currently, there are two methods for analyzing the 
stochastic dynamics of nonlinear vehicle suspension 
systems: frequency domain and time domain. The 
frequency domain method mainly analyzes the power 
spectral density function and is primarily suitable for 
the stochastic dynamics analysis of linear systems [9]. 
Different methods have been developed to obtain 
probabilistic information for the stochastic response 
of various structural systems. For instance, the Fok-
ker-Planck-Kolmogorov (FPK) [10] equation method, 
the equivalent linearization method [11], the stochastic 
averaging method [12], and the Monte Carlo method 
[13-14]. The response of a nonlinear system excited by 
a Gaussian white noise process is a Markov process, 
and its probability density function needs to be obta-
ined by solving the Fokker-Planck-Kolmogorov 
(FPK) equation. However, solving partial differential 
equations is challenging, and the FPK equation, which 
involves coupling between the state space and the 
physical system, is difficult to apply to nonlinear sys-
tems with a large number of degrees of freedom [15]. 
Additionally, Monte Carlo Simulation (MCS) is a ge-
neral method for nonlinear systems with random pa-
rameters and/or random excitations [16]. However, 
due to its high computational cost, it is typically used 
to verify the accuracy of problems. Lin et al. [17] esta-
blished and developed an efficient and precise virtual 
excitation method for random vibration analysis. By 

constructing virtual input excitations, the response 
power spectrum and statistical information can be 
quickly and easily obtained. Li and Chen [18] derived 
the Generalized Density Evolution Equation 
(GDEE). By solving the GDEE partial differential 
equation, the probability density evolution result of 
the target response can be obtained, which improves 
efficiency compared to MCS. However, during the 
calculation process, the discretized time step and 
space step need to satisfy the Courant-Friedrichs-
Lewy (CFL) condition. Chen and Yang [19] proposed 
the Direct Probability Density Integration Method 
(DPIM) based on the principle of probability conser-
vation. By introducing the Dirac function, they deri-
ved the Probability Density Integral Equation (PDIE) 
for static (dynamic) systems, which characterizes the 
explicit relationship between input and output proba-
bility densities. DPIM not only breaks through the 
CFL limitation but also greatly improves the compu-
tational efficiency for random dynamic analysis of 
large nonlinear dynamic (static) systems by using GF 
deviation point selection and smoothing technology 
of the Dirac delta function to directly solve the PDIE. 

This paper establishes a nonlinear model of a com-
plete vehicle with seven degrees of freedom. Using the 
harmonic superposition method, time-domain 
samples of random road roughness are constructed. 
Additionally, dynamic equations for a vehicle system 
with random parameters under random excitations are 
formulated. The Direct Probability Density Integra-
tion Method (DPIM) is employed to analyze the ran-
dom vibration of the nonlinear vehicle system influ-
enced by both road roughness and structural parame-
ters. The applicability of DPIM in the analysis of non-
linear and stochastic coupled vibrations is verified 
through comparison with Monte Carlo Simulation 
(MCS). The probability evolution process of the sys-
tem's random time-varying response is obtained, and 
the effects of different coefficients of variation and 
nonlinear intensities on the nonlinear random re-
sponse of the vehicle body are analyzed. 

 Dynamic model of seven-degree-of-free-
dom vehicle suspension with uncertain pa-
rameters 
Vehicle structures encompass numerous nonlinear 

elements, and the wear and aging of automotive parts 
during use further increase these nonlinear factors. 
Therefore, it is indispensable to study nonlinear vehi-
cle systems. This paper only considers the nonlinear 
stiffness characteristics of vehicle suspension springs, 
and the relationship between force and displacement 
can be approximately expressed as [20]: 

 (1) 
Where: 
 ;௦…The spring forceܨ

3
sF kx kx 
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݇…The stiffness of the spring; 
 ;The stretched length of the spring…ݔ
  .The nonlinearity of the spring stiffness…ߝ
When 0  , the suspension system can be regar-

ded as a linear system. 
The vehicle suspension model is simplified into a 

seven-degree-of-freedom spring oscillation model, as 

shown in Figure 1. Assuming the vehicle body is a ri-
gid body, when the vehicle moves in a straight line at 
a uniform speed on a horizontal road, the body will 
move in three directions: vertical, roll, and pitch. Si-
multaneously, the four wheels of the vehicle will move 
in the vertical direction. Some of the parameters are 
listed in Table 1.

Tab. 1 Structural parameters of the seven-degree-of-freedom model 
Parameters Notation Unit 

sm  Sprung mass kg 

sz  Vertical displacement of the center of mass m 

  Body Angle around x axis rad 
  Body Angle around the y axis rad 

xI  Moment of inertia about the X-axis kg·m2 

yI  Moment of inertia about the Y-axis kg·m2 

1 2 3 4, , ,m m m m  Unsprung mass kg 

1 2 3 4, , ,z z z z  Vertical displacement of unsprung mass m 

1 2 3 4, , ,s s s sz z z z  Body vertical displacement m 

1 2 3 4, , ,k k k k  Suspension spring stiffness N/m 

1 2 3 4, , ,c c c c  Damping coefficient of suspension shock absorber N/(m/s) 

1 2 3 4, , ,t t t tk k k k  Tire dynamic stiffness N/m 

1l  The distance between the center of mass and the front axle m 

2l  Distance from the center of mass to the rear axis m 

3l  Half the distance from the front axle of the vehicle m 

4l  Half the distance from the rear axle of the vehicle m 
q  Pavement excitation input m 

 

 
Fig. 1 Nonlinear suspension model of a seven-degree-of-freedom vehicle 
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Considering that the damping of tires is very small, 
it is neglected in this paper. Due to the uncertainty of 
the mass, damping, and stiffness of the suspension 
system, taking the stiffness of the suspension spring as 
an example, the spring stiffness is regarded as a ran-
dom parameter that follows a normal distribution,  

denoted as ݇∼ܰ(݇ߪ,݇ߤ),where ݇ߤ represents the mean 
value of the spring stiffness, and ݇ߪ denotes its stan-
dard deviation. 

The nonlinear dynamic equation of this system can 
be expressed as: 

̈ܺܯ + ̇ܺܥ + ܺܭ + ,ܺ)ܩ ܺ̈) =  (2) (ݐ)ܨ
  

Where: 
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 T1 2 3 4sX x x x x x  ; 
   T1 1 2 2 3 3 4 40 0 0 t t t tF t k q k q k q k q ; 

   T T
1 2 3 4 1 1 2 2 3 3 4 4s s s sz z z z z x x x x x x x x      . 

In this paper, the physical parameters of all structu-
res in the vehicle system are regarded as normally dis-
tributed random variables. Therefore, the randomness 
of the system parameters leads to randomness in the 
system's mass matrix, stiffness matrix, damping 
matrix, and matrices ܩ . Equation (2) represents the 
dynamic equation of a seven-degree-of-freedom non-
linear vehicle system under the dual randomness of 
random parameters and random excitations. 

 Time domain model of road roughness 
According to the national standard, the power 

spectral density of road roughness is expressed as [21]: 

 (3) 

Where: 
݊…Spatial frequency, with a unit of 1m ;  

0n …Reference spatial frequency, usually  
n0=0.1 1m ;  

 dG n …Road surface power spectral density, 
with a unit of 2 1/m m  ;  

0( )dG n …Road roughness coefficient;  
w …Frequency index, generally w =2. 
When analyzing the dynamic performance of a ve-

hicle during driving, the driving speed of the vehicle  

0
0

( ) ( )( ) w
d d

nG n G n
n
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is an unavoidable factor. Therefore, it is necessary to 
convert spatial power spectral density  dG n  to tem-
poral power spectral density  dG f . The relationship 
between spatial frequency and temporal frequency can 
be converted as follows: 

 (4) 
Further, the formula for transforming the power 

spectral density of space frequency into that of time 
frequency can be derived as follows: 

 (5) 

The expression for temporal power spectral den-
sity is as follows: 

 (6) 

In this paper, the harmonic superposition method 

[22] is adopted to generate time-domain samples of 
random road roughness. The power spectral density

 dG f  of the time frequency is expanded according 
to the average power spectrum, and the variance of 
road roughness is: 

 (7) 

Divide the time-frequency domain into m small in-
tervals, and then take the intermediate frequency 

mid if  of each small interval to calculate  d mid iG f  for 

each interval to replace  dG f , then 2
z can be written 

as: 

 (8) 

Then the sine wave function of the standard devi-
ation between each cell can be expressed as: 

 (9) 

Then, by superimposing the sine wave functions of each small interval, we obtain the random displacement of 
the road surface in the time domain: 

 (10) 

Where: 
∆݂…The time frequency step size;  
t …Time;  

i …Uniformly distributed random variable on 
[0, 2π]. 

 Direct probability density integral solution 
 Probability density integral equation 
In nature, there are certain physical quantities that 

maintain a constant value, such as conservation of 

mass and conservation of energy. In fact, the probabi-
lity carried by random events is also conserved. In the 
process of state changes, if no other random factors 
are introduced and no random factors disappear, the 
system can be considered to maintain probability con-
servation. 

Based on the principle of probability conservation, 
considering the random vector entering the nonlinear 
vehicle suspension system as (which includes ran-
dom parameters or loads), and the random vector of 
the system output as X , the principle of probability 
conservation in the system manifests as follows: 

 (11) 

Where: 
 …The random input vector, which includes all 

random factors introduced into the nonlinear vehicle 
suspension at the initial time t0; 

X …The dynamic response vector output by the 
system;  

0( , )p t  , ( , )p tX x …The probability density 
functions (PDF) of the input vector   and output 

vector X at times t0 and t, respectively;  
 , X …The sample spaces corresponding to 

the input and output random vectors, respectively. 
The randomness of the road-vehicle suspension 

system is transmitted from the input random vector 
 to the output vector ( )tX , and this transmission re-
lationship can be represented by the mapping G : 

 (12) 
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structures in the vehicle system and the random vector 
of road excitation, respectively. 

Based on probability theory, the probability density 

function  x,p tX of the output can be expressed in 

terms of the probability density functions ( )p   of 
the input variables. 

 (13) 

Where: 

1

1[ (x)](x)
xg

g






J , [ ( )]( )g

g 






J …The 

determinant of the Jacobian matrix. 
In a general stochastic system, the mapping G may 

be explicit or implicit. In the explicit case, an analytical 
expression for the output response can be directly ob-
tained through equations, and then the probability 
density function of the output response can be directly 
obtained through the probability density integral 
equation. However, the road-vehicle suspension sys-
tem is a complex nonlinear system, and the mapping 

G is usually implicit, making it impossible to directly 
calculate the output response of the system. There-
fore, its corresponding inverse function 1( )g � and Ja-

cobian determinant J ( )g  are difficult to determine. 
Based on the sifting property of the Dirac delta 
function, we use the Dirac delta function to solve the 
inverse function and Jacobian matrix J. At this point, 
the probability density function of the n-dimensional 
basic random vector  1 2, ,..., n    can be rewrit-
ten as: 

 (14) 

Where: 
1 1( ) ( ) ( )n ns s        s  ; 

1d nds dss L ; 
 1 2, , , n   L ; 
 1 2, , , ns s ss L ; 

s ,  …Symmetrical to each other in the random 

vector  . 
Based on the Dirac delta function variable trans-

formation formula and symmetry, as well as the 
equation G , the transformation of probability from 
the random input vector to the random output re-
sponse X can be expressed in the form of an integral. 
Therefore, the probability density function of the sys-
tem's random response  X t  at time t is: 

 (15) 

When we want to obtain the random probability 
density function of a certain component of the nonli-
near vehicle suspension system, we can integrate both 

sides of the above equation to obtain the marginal 
PDF of the random response ( )lx t : 

 (16) 

 PDIE is solved by direct probability density 
integral 

Due to the difficulty of obtaining the response qu-
antity of the nonlinear vehicle suspension system 
through analytical solutions, an efficient and accurate 
method is needed to solve the PDIE (Probability Den-
sity Integral Equation) in the equation. Chen et al. [23] 
proposed a new method to solve the probability den-
sity function of random output response, which is 
called Direct Probability Integral Method (DPIM). It 

consists of two key techniques: (1) Probability space 
subdivision, which utilizes the GF discrepancy point 
selection technique in the probability density evolu-
tion method to divide the probability space of input 
random variables; (2) Dirac delta function smoothing 
technique, which replaces the discontinuous Dirac 
delta function with a continuous Gaussian function. 
Therefore, the corresponding probability density inte-
gral equation formula for the nonlinear vehicle su-
spension system is: 
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 (17) 

Where:  
N…The number of representative points with 

punctuation selected in the probability space; 
 q …The qth representative point in the probabi-

lity space; 
,q …The probability space occupied by the qth 

representative point; 
 …The standard deviation of the Gaussian dis-

tribution, and also represents the smoothing parame-
ter;  

qP …The allocation probability of the qth repre-
sentative point in the probability space. 

In the above formula, the first asymptotic expres-
sion represents the division of the probability space, 
which can also be understood as the discretization of 
the continuous random vector  . The second 
asymptotic expression represents the smoothing of 
the Dirac function using a Gaussian function with pa-
rameter . This indicates that the response G obta-
ined through the mapping , ( , )l q l qx g t   is once 
again smoothed into a continuous variable. 

 Random response analysis of nonlinear ve-
hicle suspension structure under random 
road excitation 
This paper employs MATLAB to analyze the sto-

chastic response of a seven-degree-of-freedom vehicle 
system. Parameters of each structural component 
within the vehicle system are considered to follow a 
normal distribution [24]. The system's motion diffe-
rential equations are solved using the ode45 method. 
When the vehicle travels road surfaces of varying gra-
des at different speeds, the stochastic dynamic respon-
ses generated by the random road excitation system 
serve to validate the applicability of the Direct Proba-
bility Integral Method for the stochastic vibration re-
sponse of nonlinear vehicle suspensions under both 
random road conditions and structural parameter un-
certainties. The complete technical parameters of the 
vehicle are presented in Table 2. To facilitate clearer 
observation of the impact of the dispersion in the ve-
hicle's stochastic parameter values on the system re-
sponse, the coefficient of variation is set to 0.2 for all 
parameters.

Tab. 2 Technical parameters of a vehicle 
Parameter Distribution type Mean CV 

sm  Gaussian 1380 0.2 
I y

 Gaussian 2440 0.2 
Ix  Gaussian 380 0.2 

1 2 3 4, , ,m m m m  Gaussian 40.5 0.2 
1 2,k k  Gaussian 17000 0.2 
3 4,k k  Gaussian 22000 0.2 

1 2 3 4, , ,c c c c  Gaussian 1500 0.2 
1 2 3 4, , ,t t t tk k k k  Gaussian 192000 0.2 

la  Gaussian 1.5 0.2 
lb  Gaussian 1.7 0.2 
lf  Gaussian 1.8 0.2 
lr  Gaussian 1.8 0.2 

 
Furthermore, the classic Monte Carlo Simulation 

(MCS) method is employed as a comparison to verify 
the efficiency and accuracy of the Direct Probability 
Integration Method (DPIM) in solving the response 
of a nonlinear vehicle suspension system with coupled 
road excitation and structural parameter randomness. 

When a sufficient number of sample points are selec-
ted for Monte Carlo Simulation, the probability infor-
mation of the system can be calculated more accura-
tely. The accuracy of MCS predictions increases with 
the number of points selected. To validate the effi-
ciency and accuracy of DPIM, this paper compares  

   

    
 

,

2 2

1

, /2

1

, ( , ) d

, d

1 e
2

l

q

l l q

Y l l l

N

l l q
q

N x g t
q

q

p x t p x g t

x g t p

P









 

 




   



 

  

 
 
 

 

 



L

�

�

( )



  

  



December 2024, Vol. 24, No. 6 MANUFACTURING TECHNOLOGY ISSN 1213–2489
e-ISSN 2787–9402

 

indexed on http://www.webofscience.com and http://www.scopus.com 893 

the mean value of the system output response obta-
ined using DPIM with N=1000 representative points 
against the results from MCS with N=100000 repre-
sentative points. 

When the vehicle travels at a speed of 20m/s on a 
Grade C road surface, a time-domain model for ran-
dom road roughness is obtained using the aforemen-
tioned methods. As shown in Figure 2. 

 
Fig. 2 Time domain model of random road roughness 

 

 
Fig. 3 Surface of probability density function of vertical dis-

placement of car body 

 
Fig. 4 Surface of probability density function of vertical speed 

of vehicle body 
 
Multiply the above-generated time-domain 

samples of road roughness with tire stiffness to obtain 

the random excitation caused by road irregularities. 
This excitation is used as the random excitation input 
into the system and substituted into equation (2). The 
random dynamic response of the nonlinear vehicle su-
spension system under the coupling of road and 
structural parameter randomness is solved by the di-
rect probability density integration method. Substitu-
ting the obtained random response of vertical displa-
cement and velocity of the vehicle body into equation 
(7) yields the probability density function surface plots 
of the vertical displacement and velocity of the vehicle 
body, as shown in Figures 3 and 4. These probability 
density function surface plots provide a clearer view 
of the system's variation under random road excitati-
ons. 

By observing the probability density function sur-
face of the vehicle's vertical displacement, it can be 
found that there is little difference in the random re-
sponse output at the initial moment, t=3s, and t=7s. 
The peaks of the probability density function surfaces 
at these three moments are very high, indicating a low 
vibration frequency of the vehicle body displacement 
and relatively stable vehicle body. However, at other 
moments, the differences in response become greater, 
the peaks of the probability density function images 
are lower, the vehicle body displacement is more dis-
persed, and the vehicle vibration is more intense. 

By slicing the output probability density surface for 
the vehicle body displacement at different time points, 
we can obtain two-dimensional probability density 
curves for any given moment. Selecting the probability 
density function curves of vehicle body displacement 
at t=3s, t=5s, and t=8s, it can be seen that due to di-
fferent random road excitations, as shown in Figure 5, 
the PDF images of vehicle body displacement show 
different variation patterns at different moments.  
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By analyzing Figure 5, it can be found that even when 
the representative points selected by DPIM are 100 ti-
mes fewer than those of MCS, similar results to MCS 
can still be obtained. The PDFs match well at t=3s, 
t=8s and t=5s. In complex road excitation conditions, 
the PDF value of vehicle vertical displacement is 
smaller, while in smoother road excitation conditions, 

the PDF value of vehicle vertical displacement is lar-
ger. This observation underscores the sensitivity of the 
vehicle's response to the variability of the road surface, 
as well as the robustness of the DPIM method in ap-
proximating the MCS results with significantly fewer 
computational resources. 

 
Fig. 5 Comparison of MCS and DPIM vehicle displacement probability density curves at different times 

 
Figure 6 compares the mean results of nonlinear 

vehicle body displacement responses when using 
DPIM to obtain N=1000 representative samples and 
MCS to obtain N=100000 samples with punctuation. 
It can be found that when using the direct probability 
integral method (DPIM) to calculate the mean of the 
random response of the system, the accuracy is very 
high, and the calculation results are basically consis-
tent with the results of multiple simulation sampling 
by MCS. This illustrates the applicability and efficiency 
of the DPIM for response analysis of nonlinear vehi-
cle suspension systems under random excitation. 

 
Fig. 6 Mean displacement of 7DOF nonlinear vehicle body 

 
When the vehicle travels at a speed of 20 m/s on a 

Class A road surface, upon encountering the stochas-
tic excitation from the road acting upon the nonlinear 
suspension system, analysis using the Direct Probabi-
lity Integral Method (DPIM) yields the probability 
density surface for the vehicle under this driving con-
dition, as depicted in Figure 7. Comparing Figure 7 

with Figure 4, it becomes evident that when the vehi-
cle travels at the same speed but on different grade 
roads, the values of the probability density function 
(PDF) for the system's output stochastic response un-
der the random excitation of a Class A road surface 
are higher than those under the excitation of a Class C 
road surface. By sectioning Figure 7, three-time pro-
bability density function curves are obtained, as shown 
in Figure 8. When these are contrasted with Figure 5, 
it is observed that at t=3 seconds, the peak of the pro-
bability density function for the vertical displacement 
of the vehicle body under the excitation of a Class A 
road is approximately three times that of a Class C 
road; at t=5 seconds, the peaks differ by about eight 
times; and at t=8 seconds, the difference is roughly 
seven times. This observation reveals that under the 
random excitation of a Class A road surface, the dis-
parity in body displacement is smaller, indicating a 
more stable vehicle body. This finding also aligns with 
the fact that a Class A road surface is smoother than a 
Class C road surface. 

 
Fig. 7 Surface of body vertical displacement probability com-

pactness function (Class A road surface) 
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Fig. 8 Vertical probability density curve of vehicle body at di-

fferent time 

 Random response analysis of nonlinear ve-
hicle suspension structure with different 
parameters 
 The influence of different coefficient of vari-

ation on the stochastic response of the system 
During the manufacturing process of vehicles, 

structural parameters of the system exhibit rando-
mness due to both technical and human factors. Con-
sequently, the parameters of a nonlinear vehicle su-
spension system can be viewed as normally distri-
buted, facilitating an investigation into how variations 
in the coefficients of variation (COV) of these para-
meters impact the displacement of the vehicle body. 
By setting the COVs of each structural parameter of 
the system to 0.1, 0.2, and 0.3 respectively, we employ 
the Direct Probability Integral Method (DPIM) to 
analyze the probability density functions (PDFs) of 
the stochastic responses output by the nonlinear vehi-
cle suspension system under Class C road excitation, 
considering different levels of structural parameter va-
riability. 

Based on Figure 9, it can be observed that chan-
ging the variation coefficient of suspension structural 
parameters leads to significant variations in the peak 
values of the probability density function (PDF) of ve-
hicle body displacement at different times, and the im-
pact varies depending on the parameter variations of 
different structures. Generally speaking, the smaller 
the variation coefficient is, the higher the peak value 
of the PDF of system vehicle body displacement ob-
tained by the direct probability density integration me-
thod, and the smaller the difference in vehicle body 
displacement. By observing Figures 9a, 9b, and 9c, it 
can be seen that when the variation coefficient of each 
structural parameter is 0.1 and 0.2, the PDFs of the 
random response of vehicle body displacement are si-
milar. When the variation coefficient is 0.3, there is 

little difference in the PDF of system output vehicle 
body displacement at the moment when the vehicle is 
subjected to random road excitation. As the vehicle 
travels, the peak value of the PDF gradually decreases, 
and subsequently, there is little difference in the shape 
and peak value at each moment. 

 
Fig. 9 Surface of probability density function of body vertical 

displacement under different coefficient of variation 
 
By dividing the three-dimensional probability den-

sity function (PDF) surface plots of vehicle body dis-
placement obtained under different coefficients of va-
riation along the time axis, probability density function 
curves at different times can be obtained. By selecting 
the time points of t=1s and t=5s for dissection, the 
PDFs of vehicle body displacement with different 
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coefficients of variation at 1s and 5s can be obtained, 
as shown in Figure 10. It clearly shows that as the co-
efficient of variation increases, the peak value of the 
PDF of the system output vehicle body displacement 
gradually decreases under the same random road exci-
tation, and the range of the entire vehicle body displa-
cement gradually increases. This indicates that the lar-

ger the errors in the structural parameters of the non-
linear vehicle suspension system, the lower the stabi-
lity of the entire system, and stronger vibrations may 
occur when subjected to external excitations. There-
fore, the uncertainty of vehicle structural parameters 
is an important factor that cannot be ignored in terms 
of its impact on vehicle vibrations. 

 
Fig. 10 Probability density curves with different coefficient of variation at 1s and 5s 

 The influence of nonlinear strength on sto-
chastic response of system 

During vehicular operation, the nonlinearity of 
spring stiffness and the coupling effects between vari-
ous components are indispensable considerations. 
Changes in the intensity of spring stiffness nonlinea-
rity simultaneously impact the stability of the vehicle 
body. Therefore, analyzing the effect of varying de-
grees of suspension spring nonlinearity on body dis-
placement under random road excitation is of para-
mount importance. When a vehicle travels at a speed 
of 20 m/s on a Class C road surface, modifying the 
intensity of nonlinearity in the suspension spring stiff-
ness, the Direct Probability Integral Method (DPIM) 
can be employed to obtain probability density functi-
ons (PDFs) for body displacement under different le-
vels of nonlinearity [25]. This enables us to assess the 
implications for vehicular stability during travel. 

As previously mentioned, the intensity of nonlinea-
rity in the vehicle's spring suspension stiffness can be 
characterized by a cubic displacement relationship, 
with variations in the degree of nonlinearity achieved 
through adjustments to the parameter. By setting this 
parameter to values of 0.1, 10, 10e2, 10e3, and 10e4, 
the Direct Probability Integral Method (DPIM) is used 
to derive mean curves for body displacement under 
differing intensities of nonlinear spring stiffness, as 
illustrated in Figure 11. From the figure, it is evident 
that when the value of is 0.1 and 10, the mean body 
displacement of the vehicle's nonlinear suspension 

system under random road roughness excitation aligns 
well, showing essential consistency. As the intensity of 
nonlinear spring stiffness increases to 10e2 and 10e3, 
there is a noticeable discrepancy in the mean body dis-
placement at inflection points, with the absolute value 
of displacement at these points becoming larger as the 
degree of nonlinearity grows. When the nonlinearity 
degree parameter of the vehicle suspension system's 
spring stiffness is set to 10e4, the overall mean body 
displacement exhibits significant deviations. In regi-
ons where the change in mean body displacement is 
small, the amplitude of change in mean body displace-
ment becomes notably larger. Overall, the stronger the 
nonlinearity in spring stiffness, the more intense the 
body displacement vibration becomes. 

 
Fig. 11 Mean displacement of vehicle body under nonlinear 

strength with different suspension spring stiffness 
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Through the direct probability density integral me-
thod, we can obtain the probability density surface of 
the displacement of the vehicle under different nonli-
near strength of the suspension spring under the exci-
tation of random road roughness, and then analyze the 

vibration law of the vehicle by the probability density 
curve at each moment. The probability density 
function surfaces of different nonlinear intensities are 
shown in Figure 12. 

 
Fig. 12 Probability density function of vehicle displacement under different nonlinear strengths 

 
Through the probability density surface plot, it can 

be seen that when the nonlinearity parameter of spring 
stiffness is set to 10e2 and 10e3, as shown in Figures 
12a and b, the probability density function surfaces of 
the vehicle body displacement are consistent for both 
values. At the initial moment and at 7s, the peak of the 
probability density function is higher, indicating 
smaller differences in vehicle body displacement and 
smoother driving. When the nonlinearity parameter of 
the vehicle suspension spring stiffness is 10e4, Figure 
12c shows that the peak of the probability density 
function is higher at the initial moment. However, as 
time increases, the peak of the probability density 
function decreases under random road excitations, 
showing significant differences from Figures 12a and 
b. The difference in peak heights becomes smaller, 
and the overall trend is relatively stable. By dividing 
the probability density function surface plot, the pro-
bability density function curve at each moment can be 
obtained, facilitating a better analysis of the unique 

vibration state of the vehicle body under different 
nonlinear strengths of the suspension spring. Figure 
13 shows the probability density function curves of 
vehicle body displacement under different nonlinear 
strengths at 1s and 5s, respectively. As seen from Fi-
gure 13, under random road excitations, when the su-
spension spring stiffness exhibits soft nonlinearity, the 
probability density function of vehicle body displace-
ment changes less. As the nonlinear strength increases, 
the probability density function curve of vehicle body 
displacement shifts to the right, indicating an increase 
in overall vehicle body displacement. When the nonli-
near strength of the vehicle continues to increase, the 
vehicle body displacement changes significantly, resul-
ting in more intense vehicle vibration. These findings 
emphasize the intricate relationship between spring 
stiffness nonlinearity and vehicular dynamics, 
highlighting the need for precise parameterization to 
achieve optimal performance and ride quality, espe-
cially under stochastic environmental conditions. 
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Fig. 13 Curves of vehicle displacement probability density function with different nonlinear strengths at 1s and 5s 

 Conclusion 
In this paper, a seven-degree-of-freedom nonlinear 

suspension model for the whole vehicle is established, 
and the dynamic equation of the suspension system 
under the coupling of road surface and structural pa-
rameter randomness is constructed. Based on the con-
servation of probability, the direct probability density 
integration method is used to analyze the random dy-
namic response of the output of the nonlinear vehicle 
suspension system with random road surface and ran-
dom structural parameters. In addition, the variation 
coefficient of structural parameters and the nonlinear 
strength of suspension spring stiffness are taken as key 
parameters affecting vehicle dynamic behavior. The 
effects of different variation coefficients of structural 
parameters and different nonlinear strengths of su-
spension springs on the random dynamic response of 
vehicle body displacement are studied respectively. 
The main conclusions of this paper are as follows: 

 (1) By comparing the direct probability den-
sity integration method with the currently 
more mature Monte Carlo simulation met-
hod, it is verified that the direct probability 
density integration method can be applied to 
nonlinear vehicle suspension systems with 
coupled randomness of road surface and 
structural parameters. The results are highly 
accurate, the calculation time is reduced, the 
computational efficiency is improved, re-
flecting the advantages of the direct probabi-
lity density integration method. 

 (2) When a vehicle travels at the same speed 
on different grades of roads, the probability 
density functions (PDFs) of the random re-

sponses output by the nonlinear vehicle su-
spension system due to excitations from ran-
dom road surfaces are different. Comparing 
the PDFs of the system's random responses 
obtained through the direct probability den-
sity integration method when the vehicle tra-
vels on Grade A and Grade C roads, respecti-
vely, it is found that the peak of the PDF at 
each moment under Grade A road excitation 
is much higher than that under Grade C road 
excitation, and the probability density 
function curve at each moment is shifted to 
the left. The smaller the difference in vehicle 
body displacement at each moment under 
Grade A road excitation, the smoother the ve-
hicle travels. 

 (3) Based on this, the analysis of the random 
dynamic response of nonlinear vehicle body 
displacement was conducted by studying di-
fferent variation coefficients of structural pa-
rameters. The results show that when the va-
riation coefficient of the structural parameters 
of the suspension system is 0.1, the peak value 
of the PDF of the vertical displacement of the 
vehicle body at various moments is approxi-
mately two orders of magnitude higher com-
pared to the PDFs with variation coefficients 
of 0.2 and 0.3, indicating smoother vehicle 
travel. However, as the variation coefficient 
increases, the peak value of the probability 
density function curve decreases, indicating 
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greater variability in vehicle body displace-
ment at a given moment and more intense 
vibration. 

 (4) Under the excitation of random road rou-
ghness, the vibration state of the vehicle body 
was observed by varying the stiffness of the 
springs in the nonlinear suspension. In the 
case of soft nonlinearity, the probability den-
sity function curves of vehicle body displace-
ment at various moments are relatively con-
sistent. As the nonlinear strength increases, 
the vehicle body displacement becomes lar-
ger. When stronger nonlinear spring stiffness 
is adopted, the probability density function 
continues to shift to the right, indicating a 
continued increase in vehicle body displace-
ment. This leads to a decrease in the vibration 
isolation performance of the suspension sys-
tem, increasing the bumpy ride and affecting 
passenger comfort. 
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