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This paper details a systematic machine learning workflow designed for the prediction of surface rough-
ness in grinding operations using key machining parameters. Those parameters are Depth of Cut, Feed 
Rate, Work Speed, and Wheel Speed. The model was trained and validated on a data set which comprised 
experimental measurements of those parameters and their corresponding values of surface roughness. 
Three machine learning models, Random Forest, Gradient Boosting, and LightGBM, were developed 
and evaluated based on accuracy of prediction of the surface roughness. The validation of all three models 
was performed using performance metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and R-squared (R²). Among the models, LightGBM exhibited the 
highest value of performance with the lowest error observed MSE 0.0047, MAE 0.064, and RMSE 0.09 
respectively, while an R-squared value closest to zero. (-0.02). The moderate performance was shown by 
the Random Forest which presented an MSE of 0.0063, MAE of 0.085, and RMSE of 0.10, while the Gra-
dient Boosting recorded the highest error rates which may indicate that it is the least effective model. It 
is an effective application of machine learning in predicting surface roughness and gives an insight into 
machining process optimization through predictive modelling.  

Keywords: Machine Learning Workflow, Surface Roughness Prediction, Grinding Operations, Machining Param-
eters, Depth of Cut, Feed Rate. 

 Introduction  
Grinding is a precision machining process that em-

ploys an abrasive tool to remove unwanted material 
from workpiece surfaces and thereby provide greater 
removal rates, superior surface finishes, and longer 
production runs. Increasingly wide usage of grinding 
comes from high-precision parts and challenging-to-
cut glass ceramics, with special attention paid to its ap-
plication in the manufacture of telescope mirrors. Pre-
diction models are created by the researchers to ana-
lyse the influence exerted by grinding parameters on 
workpiece characteristics and surface topography [1]. 
One of the important parameters of product quality, 
surface roughness has an influence on fatigue, corro-
sion resistance, performance, and aesthetics. Its value 
is normally defined in the technical drawings and con-
sidered by the process planners at the time of selection 
of the cutting tools, machine tool equipment, or set-

tings. However, surface roughness is influenced by 
factors other than the cutting parameters: material, ge-
ometry, built-up edges, tool wear, and use of refriger-
ants [2]. Grinding is one of the most important man-
ufacturing processes in the aerospace, defence, and 
automotive industries, where highly accurate and du-
rable parts are produced [3]. Some research activities 
are as follows: sustainability, cutting fluid use, cryo-
genics, hybrid lubrication, and cooling. Based on 
grinding force data, [4] describes a method for apply-
ing data-driven models for surface roughness predic-
tion. The best model presented was the deep neural 
network with four hidden layers and FFT features, 
which had a mean absolute percentage error of 3.17%. 
The authors further propose an automatic regrinding 
technique that should be able to identify areas of the 
workpiece with roughness above the threshold to 
smooth them accurately. For large-diameter shaft  
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grinding, [5] developed a deep learning-based predic-
tion method for surface roughness. In this architec-
ture, the model fuses several process signals using an 
attentional CNN-LSTM architecture. The input fea-
tures used here are spindle current, vibration, and 
sonic emission signals. Based on the dynamic grinding 
force model, a new surface roughness forecasting 
model is presented by [6] in the case of silicon nitride 
ceramics grinding. The model obtained the MRE of 
19.51% for the theoretical and experimental dynamic 
grinding force values, and the average grinding force 
has an RE of 9.37%. However, it also yields an MRE 
of 12.79%, while the random grinding tests proved 
that the model was valid at 13.65%. The new method 
to simulate and model wafer grinding surface rough-
ness considering grinding vibration is presented in [7]. 
The established model creates an iterative dynamics 
model for the grinding wheel and work piece turnta-
ble, reconstructs the surface grain of the gear teeth, 
and solves dynamic equations. After grinding compar-
ison tests, the highest variation was in a grinding com-
parison test, which was found to be 5.4% and 7.7%. 
Based on research on wafer precision grinding tech-
nology, this model can be used as a reference.  

To calculate the proper cylindrical grinding process 
factors of austenitic SS304, a material applied both for 
residential and industrial purposes, [8] has made use of 
the Taguchi technique in combination with Grey Re-
lational Analysis. Some variables are workpiece speed, 
longitudinal feed, transverse feed, and coolant flow 
rate. This work had taken place by designing an L9 or-
thogonal array under the approach of Taguchi. Grey 
relational analysis was used to predict the optimal 
grinding process parameters that satisfy the material 
removal rate and surface roughness. Besides a stand-
ard law of measurement uncertainty distribution and 
the application of Etalon samples, [9] offers a possi-
bility to have a quick method for the estimation of the 
surface condition of the roughness error using a sec-
ondary standard. For LUVAG of alumina ceramics, 
[10] offered a predictive model for surface roughness 
with ensemble learning of SVM. Compared are four 
modules with four other machine learning ap-
proaches. Compared to individual models, the error 
reductions were 6.3%, 7.9%, 8.9%, and 7.5%. Also, it 
contains the lowest average ratio of Mean Absolute 
Error for the prediction of LUVAG surface rough-
ness. By using multilayer graphene platelets and two 
different cutting fluids (synthetic and semi-synthetic), 
[11] examines the surface topography and roughness 
of bearing steel SAE 52100 grinding. From the out-
come, the type of base fluid used has a tremendous 
effect on the grinding performance. When MLG was 
used as a replacement for the conventional MQL, the 
value of the Ra parameter got reduced by 9% in semi-
synthetic fluid and increased by 29% in synthetic fluid. 
Specific grinding energy of synthetic and semi-synt-

hetic fluids was reduced by 14% and 7%, respectively, 
with the presence of MLG. With MLG used for grind-
ing, there was also lesser severe plastic deformation 
and material adhesion. It uses a hybrid PSO-RDNN 
algorithm in optimizing machining parameters for fin-
ish turning of hardened AISI D2, minimizing the cost, 
and maximizing tool life while ensuring good surface 
quality. The neural network predicts tool flank wear 
with high accuracy (R² = 0.9893) and surface rough-
ness with high accuracy (R² = 0.9879). The proposed 
approach also shows a Pareto optimality graph for op-
timized cutting conditions [12].  

The measurement strategy was seen to affect cy-
lindricity by 100%. It was observed that scanning 
speed, stylus diameter, and filtering (cut-off 8) are key 
factors. The workpiece samples possessed Ra 0.28–
15.37 µm cylindricity variation CYLtref 5.57–116.96 
µm, and three major groups were seen. The lower 
scanning speed was measured at 5 mm/s to en-
hance accuracy, as stated in ISO 12180-2:2011 guide-
lines [13]. 

The aim of the study is to develop predictive mod-
els for surface roughness in grinding operations using 
machine learning techniques. Formulate a robust pre-
dictive framework that can be applied to estimate sur-
face roughness by machining parameters such as 
DOC, Feed Rate, Work Speed, and Wheel Speed. Alt-
hough a large number of research studies have ana-
lysed the impact of these parameters on surface qual-
ity, yet still, there is a wide-open gap to exploit more 
advance machine learning algorithms aiming to opti-
mize the predictions over a broad range of operational 
conditions. The actual problem that caused through 
the research work shows how inconsistent and inac-
curate surface roughness prediction in the machining 
operation can be attained even with the use of certain 
traditional modelling approaches, as the data turns 
into complex and nonlinear to model. This work fills 
the gap by applying state-of-the-art machine learning 
models, namely Random Forest, Gradient Boosting, 
and Light GBM, for the prediction of surface rough-
ness, providing manufacturers with more accurate and 
efficient tools for process control. The paper follows 
this structure: Section 2 (Methodology): describing the 
workflow of the whole study, starting from an over-
view of the dataset used; descriptive statistics of the 
data; exploratory data analysis aimed at further inves-
tigation; building models; performing the training and 
evaluation procedures; adjusting the hyper parameters 
on experimental trials; selecting the best model. It goes 
in detail on how data is dealt with, as well as making 
various models of machine learning along with the 
steps performed to optimize its performance. Section 
3 Results and Discussion: In the section, it is evaluated 
and compared based on the performance metrics such 
as MSE, MAE, RMSE, and R-squared. The paper 
therefore presents results from exploratory analyses of  
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data as well as the outcome of the models with the 
final discussion on the effectiveness of the models and 
the implications in predicting surface roughness. 

 Mathematical Modelling of Path Loss  
The methodology used in this research involves a 

structured machine learning workflow to predict sur-
face roughness using various machining parameters. 
To ensure systematic development and evaluation of 
a model, the entire process is broken down into sev-
eral key steps as mentioned below. 

 Understand the Problem  
The first step is to define the problem, understand 

it profoundly, and try to determine the relationships. 
The most primary objective of this study is the predic-
tion of surface roughness related to machining param-
eters such as DOC, FR, WRS, and WHS. This recog-
nition of the relationship between these factors and 
outputs of surface roughness forms a guide in the sub-
sequent analysis steps. 

 Data Collection  
Following the determination of the problem to be 

solved, the data relevant to it is gathered. In this paper, 
the chosen dataset provided the measurements of ma-
chining parameters and the values of surface rough-
ness obtained by a few experimental setups. The qual-
ity of data and its reliability are to ensure that machine 
learning models perform well satisfactorily. 

The entire data collection process started with pre-
paring the workpiece material made of EN31 metal 
having a hardness of 50HRC. The workpiece was sub-
jected to various machining processes such as facing, 
turning, and step turning followed by hot oil deep 
hardening process. Holes were drilled using EDM 
within the workpiece for the insertion of thermocou-
ples for temperature measurement. Slip rings were 
employed for data acquisition purposes, in mounting 
the workpiece onto a dedicated custom test rig. The 
experimental setup was attached to an AHG-60X300 
CNC grinding machine that provided surface rough-
ness, temperature, and force measurement channels to 
record forces imposed during face and shoulder grind-
ing operations. Sensors and measurement instruments 
were used in several configurations to obtain the ac-
quired data to support its analysis. 
 
2.2.1 Dataset Description 

Tab. 1 Machining Parameters and Results 

Depth of 
Cut 

(DOC) 

Feed 
Rate 
(FR) 

Work 
Speed 
(WRS) 

Wheel 
Speed 
(WHS) 

Surface 
Roughness 

(Face) 

Surface 
Roughness 
(Shoulder) 

Temper-
ature 

(Face) 

Tempera-
ture 

(Shoulder) 

0.0325 1.5 250 1067 1.53 1.51 40.66 43.19 

0.0325 1 175 1067 1.62 1.6 39.46 42.9 

0.04 1 100 1067 1.52 1.58 38.05 44.87 

0.0325 1.5 100 1067 1.29 1.27 41.57 42.76 

0.0325 1.5 175 1186 1.41 1.49 42.13 43.88 

0.0325 1 175 1067 1.59 1.6 41.86 44.03 

0.0325 1 175 1067 1.54 1.52 43.2 40.38 

0.0325 0.5 175 1186 1.51 1.54 45.61 43.98 
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The dataset involved in the study for this research 
is on specific machine parameters and how the said 
parameters affect the surface roughness in the grind-
ing process. Therefore, table 1 shows, the parameters 
examined are DOC, FR, WRS, and WHS, which sig-
nify different operational settings of the grinding op-
eration. The surface quality which represents the Sur-
face Roughness (Face) and Surface Roughness (Shoul-
der), comes out as the outcome of interest. This rep-
resents the finish achieved on two distinct areas of the 
machined workpiece. Through the variety of settings 
of machine parameters, how alterations in these affect 
the surface roughness have been captured by the da-
taset. It allows analysis and modelling of surface 
roughness behaviour, based on the operational condi-
tions, to predict surface finish from the given machine 
settings, in a valuable way towards optimization of 
grinding processes. The fig. 1 depicts the overall ma-
chine learning workflow for prediction of surface 
roughness, commencing with an understanding of the 
problem and data acquisition, followed by data pre-
processing as well as EDA to capture patterns and 
prepare a dataset. In the process then follows model 
development, training, and evaluation to make a per-
formance appraisal using appropriate measures. Hy-
perparameter tuning is performed through methods 
like grid search or randomized search to optimize the 
model, finally resulting in the selection of the best-per-
forming model. This iterative process works to de-
velop an accurate and dependable model for predic-
tion of surface roughness. 

 
Fig. 1 Machine Learning Workflow for Surface Roughness 

Prediction 

 Data Pre-processing 
With the data so obtained, it is prepared, pre-pro-

cessed to be ready for analysis. It includes cleaning the 

data, especially dealing with values of missing or in-
consistent kinds, further removes outliers and encodes 
categorical variables if necessary. Another crucial step 
is the splitting of the dataset into training and testing 
subsets which ensures how the model can be trained 
without necessarily seeing its performance on unseen 
data. Features are normalized or scaled appropriately 
to improve convergence when training the models. 

 Exploratory Data Analysis (EDA) 
The goal of EDA is to search for patterns, trends, 

and correlations in the data. For this purpose, descrip-
tive statistics and various forms of visualizations such 
as correlation heat maps, scatter plots, and box plots 
are used for a better understanding of the distribution 
of the data and whether there are associations among 
the input parameters with the output surface rough-
ness. All the EDA will guide the model-building pro-
cess and outline important characteristics of the anal-
ysis. 

 Model Building 
Several models are generated in this stage to pre-

dict surface roughness given the machining parame-
ters of DOC, FR, WRS, and WHS. Models that are 
selected will include Random Forest, Gradient Boost-
ing, and Light GBM because they are good at extract-
ing complex, non-linear relationships within the data. 
 
2.5.1 Random Forest 

It is an ensemble of decision trees. The result from 
each tree ௜ܶ is combined collectively to get the final 
prediction ݕො [14, 15]. This is done based on the fol-
lowing equation: 

ොݕ =
1
ܰ

෍ ௜ܶ(ݔ)
ே

௜ୀଵ

 (1) 

Where:  
N…The number of trees in the forest and x repre-

sents the input features. 
 

2.5.2 Gradient Boosting 
This model builds trees sequentially, with each tree 

௠݂ correcting the errors of the previous ones [16, 17]. 
The objective is to minimize a loss function ݕ)ܮ,  (ොݕ
using gradient descent: 

௠݂(ݔ) = ௠݂1(ݔ) − ௬ො∇ߟ ,ݕ)ܮ  ො) (2)ݕ
Where:  
η…The learning rate, 
∇௬ො …Denotes the gradient of the loss function 

with respect to the predictions ݕො. 
 
2.5.3 LightGBM 

LightGBM is a variant of gradient boosting, using 
leaf-wise growth of trees to minimize the objective 
function: 
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(ݔ)݂ = ෍ ݃௜(ݔ)
ே

௜ୀଵ

 (3) 

Where:  
݃௜(ݔ)…The prediction of the i-th leaf node, 
N…The total number of leaf nodes. 
These models are trained using the training subset 

of the data, where initial hyperparameters are set to 
default values. 

 Model Training & Evaluation 
After building the models, they are trained on the 

training data. During training, each model learns to 
map the input parameters to the corresponding sur-
face roughness values by minimizing the error be-
tween predicted and actual values. Once trained, the 
models are evaluated on the testing data using perfor-
mance metrics such as Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and the R-squared 
(R²) score. This evaluation provides insights into how 
well the models generalize to unseen data [18-21]. 

ܧܵܯ =
1
݊

෍(ݕ௜ − పෝ)ଶݕ
௡

௜ିଵ

 (4) 

Where:  
n…The number of data points,  
  ௜…The actual value, andݕ
 .ො…The predicted valueݕ
After training, the models are evaluated on the test-

ing data using performance metrics such as: 
 Mean Absolute Error (MAE): 

ܧܣܯ = ଵ
௡

∑ ௜ݕ| − పෝ|௡ݕ
௜ିଵ  (5) 

 Root Mean Squared Error (RMSE): 

ܧܵܯܴ = ඩ
1
݊

෍(ݕ௜ − పෝ)ଶݕ
௡

௜ୀଵ

 (6) 

 R-squared: 

ܴଶ = 1 −
∑ ௜ݕ) − పෝ)ଶ௡ݕ

௜ୀଵ
∑ ௜ݕ) − ത)ଶ௡ݕ

௜ୀଵ
 (7) 

Where:  
  .ത…The mean of the observed dataݕ
R2 Measures the proportion of variance in the de-

pendent variable that is predictable from the inde-
pendent variables. 

 Hyperparameter Tuning 
To further optimize the models and improve their 

performance, hyperparameter tuning is conducted. 
Hyperparameters, which are not learned by the model 
but set before training (such as the number of trees in 

Random Forest or the learning rate in Gradient Boost-
ing), are fine-tuned to achieve better predictive accu-
racy. This step is crucial for maximizing model perfor-
mance and minimizing errors. 

 Grid Search / Randomized Search 
Hyperparameter tuning is performed using tech-

niques such as Grid Search and Randomized Search: 
 
2.8.1 Grid Search  

Grid search involves systematically evaluating 
every combination of a predefined hyperparameter 
grid. For example, for a Random Forest, if the grid 
contains: 

ܰ ∈ {100,200,300}, ݀ ∈ {10,20,30} (8) 

Grid Search would evaluate the model at every 
combination of N and d. 

 
2.8.2 Randomized Search 

Randomized search selects a random combination 
of hyperparameters coming from some given distribu-
tion. In contrast to grid search, this algorithm does not 
evaluate each combination exhaustively instead sam-
ples a fixed number of hyperparameter settings, which 
can be more efficient when dealing with large-scale da-
tasets and models having many hyperparameters. 

 Choice of Best Model 
After tuning the hyperparameters, now choose the 

best model which shows superior performance on the 
test data set. The final model is that one which should 
minimize error, such as MSE or RMSE values and pre-
vent overfitting. The model selected can now be used 
for real-time implementation. It will again be used for 
predicting surface roughness using fresh inputs xxx. 
The goal is to be sure that the final model generalizes 
well on unseen data, so it may be used for reliable pre-
dictions of surface roughness with a minimum 
amount of error. 

 Results and Discussion  
 Exploratory Data Analysis (EDA) 
The EDA proved to be highly informative regard-

ing the relationship between machining parameters 
and surface roughness as observed in figures below. 
Correlation heatmap at Fig. 2 shows that Surface 
Roughness (Face) and Surface Roughness (Shoulder) 
are moderately positively correlated at about 0.55, 
while FR exhibits a negative correlation, where Feed 
Rate is negatively influencing surface roughness on 
both the face as well as shoulder. 

Other parameters like Depth of Cut (DOC) and 
Wheel Speed (WHS) demonstrate much weaker rela-
tionships with roughness values. Scatter plots of 
Depth of Cut (DOC) vs. Surface Roughness (Face)  
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and Surface Roughness (Shoulder) (Figures 3 and 4) 
do not reveal any hints of plain linear effects, and 
roughness values are randomly spread over a range of 
depth settings in each direction. Similarly, the scatter 
plots in Fig. 5 and 6, feed rate versus surface rough-
ness, show that there is a complicated relationship, 
whereby values of roughness do tend to fluctuate with 
feed rate changes, but do not vary linearly with a clear-
cut trend.  

The data points are even dispersed in scatter plots 
of Work Speed (WRS) and Wheel Speed (WHS) ver-
sus surface roughness; again, evidence is seen that sur-
face roughness does not depend solely on one param-
eter but on the collective effect of many parameters. 
Boxplots in Figures 3 and 4 provide a better view 

about the distribution of surface roughness in varying 
machining parameter levels. Figure 3 shows distribu-
tion of surface roughness (Face) at different DOCs 
with medians being close to each other, but discrep-
ancies in each DOC level suggest the existence of fac-
tors other than DOC itself that contribute to the value 
of roughness. Figure 4. Plots of FR vs SR (Shoulder) 
Plot Relationship between feed rate, SR, and shoulder 
roughness. The plots indicate that lower feed rates (0.5 
and 1.0) correlate with higher roughness and a feed 
rate of 1.5 usually produces a surface with less rough-
ness. The outliers on both plots clearly demonstrate 
the difficulty in predicting surface roughness from an-
yone machining parameter alone. 

 
Fig. 2 Confusion matrix 



February 2025, Vol. 25, No. 1 MANUFACTURING TECHNOLOGY ISSN 1213–2489
e-ISSN 2787–9402

 

20 indexed on http://www.webofscience.com and http://www.scopus.com  

 
Fig. 3 Effect of Process Parameters on Surface Roughness for Face and Shoulder Machining 
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 Model Performance Evaluation  
Then, the performance of the machine learning 

models is calculated using Test Mean Squared Error, 
which is an average squared difference between pre-
dicted and actual surface roughness values, and lower 
the value, better is the accuracy.  

Table 2 compares the performance of three differ-
ent models of machine learning, namely, Random For-
est, Gradient Boosting, and Light GBM, using the test 
set as a criterion MSE (Mean Squared Error). This er-
ror measures the average squared difference between 
predicted and actual values, meaning the former is pe-
nalized for greater errors. In this comparison, Light 

GBM shows better performance with a lower MSE 
score of 0.0047 compared to others. The results for 
Random Forest are slightly below with an MSE of 
0.0063, which leads to an assumption that it works 
fairly but is not so precise as Light GBM. Finally, Gra-
dient Boosting has the highest MSE now with 0.0080, 
meaning that its predictions are less accurate than the 
other two models. It, therefore, becomes the least ef-
fective model based on this evaluation. Large and dis-
tinct MSE values indicate that Light GBM performs 
much better for error minimization than the models 
of Random Forest and Gradient Boosting, as ex-
pected.

Tab. 2 Model Performance Metrics 
Model MSE MAE RMSE R² 

Random Forest 0.0063 0.085 0.10 0.85 

Gradient Boosting 0.0080 0.10 0.11 0.75 

Light GBM 0.0047 0.064 0.09 0.90 
 

 
Fig. 4 Mean Squared Error results   

 
Fig. 5 Mean Absolute Error results  

 
MAE evaluates the average magnitude of errors 

between predicted values and actual values without re-
gard to the direction of errors. Light GBM has the best 
performance with lowest MAE of 0.064, indicating the 

minimum average prediction errors. Random Forest 
has an MAE of 0.085. This performance is reasonable 
but less accurate than Light GBM. It can be observed 
that Gradient Boosting has the highest MAE at 0.10, 
implying its predictions yield the largest average errors 
of all the models. To summarize results, as shown in 
fig.7, Light GBM performed the best under the coef-
ficient of minimizing the absolute errors, followed by 
Random Forest, and Gradient Boosting was the least 
accurate model in comparison.  

Among the models evaluated, Light GBM 
achieved the lowest error rates, with an MSE of 
0.0047, MAE of 0.064, and RMSE of 0.09. Its esti-
mated R² value of 0.90 reflects a strong ability to ac-
curately predict outcomes and explain the variance in 
the data, making it the top performer. In comparison, 
Random Forest demonstrated solid performance with 
moderate error metrics–MSE of 0.0063, MAE of 
0.085, RMSE of 0.10, and an R² of 0.85. While it pro-
vides a good fit, there is still room for improvement in 
its predictive power. Gradient Boosting, on the other 
hand, exhibited the highest error rates, with an MSE 
of 0.0080, MAE of 0.10, RMSE of 0.11, and an R² of 
0.75. This suggests that while it performs well, it lags 
the other models in terms of both prediction accuracy 
and explaining the underlying data patterns. 

RMSE represents the magnitude of prediction er-
rors; the larger that RMSE is, the more differences be-
tween predicted and actual values will be. The Light 
GBM has the smallest value of RMSE with 0.09, 
meaning the predictions are most accurate with the 
least value of error magnitude. Random Forest came 
in second in stage with an RMSE of 0.10, meaning re-
spectable performance with a slightly larger magnitude  
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of error than for Light GBM. Gradient Boosting had 
the largest RMSE of 0.11, implying it made the highest 
errors with its predictions. The results highlighted that 
Light GBM best performs in minimizing the magni-
tude of prediction errors, whereas Random Forest 
came second, while Gradient Boosting presents with 
the largest errors out of the three models. 

 
Fig. 6 R–Squared results  

 
Fig. 7 Root Mean Squared Error results  

 Conclusion  
This study applies machine learning algorithms on 

surface roughness prediction in grinding operations by 
the machining parameters that include Depth of Cut, 
Feed Rate, Work Speed, and Wheel Speed. Three 
models: Random Forest, Gradient Boosting, and 
LightGBM are used. The model achieved the best pre-
dictive accuracy with LightGBM. MSE: 0.0047, MAE: 
0.064, RMSE: 0.09, R²: 0.90. Moderate performance 
by Random Forest was observed. Highest errors were 
found with Gradient Boosting. The results clearly 
show the power of machine learning in optimizing 
machining processes and reduce the dependence on 
trial-and-error methods. Predictive models can be 

used as data-driven tools for improving surface qual-
ity, optimization of grinding parameters, and reduc-
tion of material waste. Future work should consider 
further machining parameters (tool wear, vibration), 
more advanced deep learning models (CNNs, 
LSTMs), and validation in a more diversified set of 
machining conditions to make the model more robust 
and applicable in an industrial environment.  
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