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To enhance the accuracy of fault diagnosis (FD) in motor rotor systems, this study introduces a novel 
method that leverages feature extraction (FE) combined with a CNN-BiGRU-Attention deep learning 
model. Initially, the time-domain features of the vibration signals are extracted using Variational Mode 
Decomposition (VMD), which also effectively denoises the data. Subsequently, the frequency-domain 
features of the vibration signals are extracted via Fast Fourier Transform (FFT). The aggregated features 
are then fed into the CNN-BiGRU-Attention model to perform fault classification. In this model, the 
Convolutional Neural Network (CNN) module extracts local spatial features, the Bidirectional Gated 
Recurrent Unit (BiGRU) module models the temporal dependencies, and the Attention mechanism 
enhances the focus on critical fault information, thereby improving the model's classification perfor-
mance. Experimental results demonstrate that the proposed FD method achieves an accuracy of 99.58%. 
Compared to other commonly used models, the performance metrics of our model show significant ad-
vantages and superior performance. 

Keywords: Electric motor rotor system; Fault diagnosis; Variational mode decomposition; Fast fourier transform; 
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 Introduction 

The rotor system of an electric motor constitutes a 

critical component in large-scale mechanical equip-

ment, directly influencing the performance and safety 

of the apparatus. Accurate diagnosis of faults within 

the rotor system is paramount for preventing equip-

ment downtime, extending operational longevity, and 

reducing maintenance costs [1]. 

FD based on vibration signals currently stands as a 

prevalent method for mechanical fault detection. Me-

chanical vibration signals exhibit characteristics of im-

balance and non-linearity. Extracting effective featu-

res from these signals is a prerequisite for FD [2]. Re-

search documented in Reference [3] employs Variati-

onal Mode Decomposition (VMD) for the adaptive 

decomposition of complex signals and enhances FE 

through the integration of Variable Step-Size Filtering 

Waveform VMD (VFW-VMD), thereby improving 

the signal processing's noise resistance and robust-

ness. Reference [4] utilizes Fast Fourier Transform 

(FFT) for frequency domain analysis, combined with 

Sparse Discrete Fourier Transform (SparseDFT) to 

enhance computational efficiency, which is widely 

used in signal processing and frequency analysis. 

Furthermore, Reference [5] applies the VMD method 

to decompose vibration signals of rolling bearings to 

obtain multiple modal components. Subsequent 

spectral analysis of these modal components through 

FFT allows for the extraction of principal fault  

characteristics, thereby enhancing the accuracy of the 

diagnosis. 

In recent years, deep learning has been extensively 

applied in the FD of mechanical equipment. Among 

the various deep learning algorithms, Convolutional 

Neural Networks (CNN) [6] and Recurrent Neural 

Networks (RNN) [7] have demonstrated exceptional 

performance. However, the use of a single CNN or 

RNN presents certain limitations in handling the tem-

poral and spatial features of complex signals. Con-

sequently, models that combine features of CNNs and 

RNNs have been proposed. Reference [8] introduces 

a deep model based on CNN and Long Short-Term 

Memory (LSTM) networks for the spatial extraction 

and temporal modeling of fault characteristics, signifi-

cantly enhancing diagnostic precision. Reference [9] 

describes a model that integrates Multi-Scale CNNs 

with Bidirectional Gated Recurrent Units (BiGRU) 

for extracting spatial and temporal features in high-

noise environments, thereby improving FD accuracy. 

Reference [10] proposes a hybrid model combining 

Multi-Layer Perceptrons (MLP) with LSTM, achieving 

dual functionality in bearing FD and remaining life 

prediction. 

This study introduces an FD method for rotor sys-

tems based on FE and a CNN-BiGRU-Attention mo-

del. We utilize VMD and FFT to extract time- 
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frequency domain features from vibration signals, 

which serve as inputs for the constructed CNN-

BiGRU-Attention model to diagnose rotor system 

faults. The CNN extracts local features, the BiGRU 

captures temporal dependencies, and the Attention 

mechanism enhances key features, all aimed at impro-

ving diagnostic accuracy. 

 Methodology for FD in Rotor Systems 

In order to effectively extract fault characteristic 

information from nonlinear, non-stationary vibration 

signals and enhance the precision of FD in rotor sys-

tems, this study introduces an FD methodology based 

on FE and a CNN-BiGRU-Attention model. The 

principle of this method is illustrated in Figure 1. 

 

Fig. 1 FD model based on FE and CNN-BiGRU-Attention 
 
The diagnostic model for rotor systems based on 

the FE and CNN-BiGRU-Attention model comprises 
an FE module and a fault identification module. 

• 1) FE Module: Initially, the raw signal is de-

composed into time domain components 

using VMD, from which time domain featu-

res are extracted. Subsequently, these compo-

nents undergo an FFT to derive frequency 

domain features. The correlation coefficients 

of these frequency domain features are calcu-

lated, and the optimal frequency domain 

components are combined with the time do-

main features post-VMD decomposition.  

• 2) Fault Identification Module: The combined 

time-frequency domain features are proporti-

onally divided into datasets. These datasets 

are then utilized as inputs for the CNN-

BiGRU-Attention model to classify faults. 

 FE Module 

2.1.1 VMD Decomposition 
VMD is a classical algorithm for time-frequency 

signal analysis. Compared to the traditional Empirical 
Mode Decomposition (EMD), VMD is grounded in a 

more robust mathematical framework and exhibits su-
perior decomposition capabilities. VMD transforms 
the signal decomposition process into a non-recursive 
mathematical optimization problem by constructing a 
variational problem. Solutions are iteratively sought to 
optimally decompose the signal into its modal compo-
nents, termed IMFs. This method effectively suppres-
ses mode mixing, thereby significantly enhancing de-
composition efficiency and robustness [11-13]. 

The core principle of the VMD algorithm is to re-
formulate the signal decomposition problem into a 
non-recursive variational constraint optimization pro-

blem. The objective is to iteratively extract 𝑘 modal 

components, 𝑢𝑘(𝑡), from the original signal, minimi-
zing the cumulative bandwidth of these components 
while satisfying the conditions for signal recon-
struction. Specifically, the VMD algorithm aims to mi-
nimize the following objective function: 
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Where: 

𝑢𝑘(𝑡)…The 𝑘-th modal component; 

𝜔𝑘 …The central frequency of the 𝑘 -th modal 
component; 

∂𝑡…The time-domain derivative operator; 

𝛿(𝑡)…The unit impulse function. 
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The optimization framework is further elaborated 
by incorporating Lagrange multipliers λk and a penalty 
factor α, thus formulating a variational problem. Ulti-
mately, through iterative updates of the central freque-
ncies and modal components, the signal’s modal com-
ponents are resolved [14-15]. 
 
2.1.2 FFT Transformation and Frequency Do-
main Feature Selection 
2.1.2.1 FFT Transformation 

FFT is an efficient algorithm for performing the 
DFT. It converts time-domain signals into frequency-
domain signals, thereby enabling rapid analysis of 
spectral characteristics [16]. 

The primary operational steps of the FFT include 
the following components. Initially, the input vibra-

tion signal 𝑥(𝑡) is sampled to yield a discrete time-do-

main signal 𝑥[𝑛]. Subsequently, the FFT algorithm is 
employed to transform this discrete time-domain sig-

nal into a frequency-domain signal 𝑋[𝑘], facilitating 
the acquisition of amplitude and phase information 
for different frequency components [17]. Based on 
this, spectral features can be further extracted, inclu-
ding the Magnitude Spectrum and PSD. The Magni-
tude Spectrum is utilized to characterize the energy 
distribution of the signal, and its computation is ex-
pressed by the formula: 

2 2| [ ] | Re( [ ]) Im( [ ])X k X k X k= +
 

(2) 

The PSD describes the power distribution across 
various frequencies. The formula for computing the 
PSD is as follows: 

21
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Where: 

𝑁…The number of points in the FFT; 

𝑓𝑠…The sampling frequency; 

𝑋[𝑘]…The FFT amplitude of the 𝑘-th frequency 
point.  

The efficiency of FFT in computation and FE ren-
ders it an essential tool for analyzing the spectral pro-
perties of signals. 

FFT translates the optimal modal component from 
the time domain to the frequency domain, calculating 
the signal's spectral characteristics. These spectral pro-
perties primarily include the Magnitude Spectrum and 
the PSD. Through these frequency domain features, 
the energy distribution of the signal at different 
frequencies can be revealed [18-20]. 
 
2.1.2.2 Frequency Domain Feature Selection 

To reduce redundancy in frequency domain featu-
res, minimize the interference of irrelevant informa-
tion, and enhance the model's ability to recognize key 
frequency components, the method of correlation co-
efficients is employed for feature selection, choosing 
components with the highest correlation with the ori-
ginal signal for feature combination. 

Common correlation coefficient methods include 
Pearson correlation coefficient, Spearman's rank 
correlation coefficient, and Kendall's rank correlation 
coefficient. This study utilizes the Pearson correlation 
coefficient due to its simplicity, sensitivity to linear re-
lationships, and effective measurement of trend con-
sistency between the IMF and the original signal in the 
frequency domain, making it suitable for rapid se-
lection of representative frequency domain features. 
The formula is as follows: 

Cov( , )
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u x
r

u x
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Where:  

𝑟…The Pearson correlation coefficient, ranging 
from [−1,1], with values closer to 1 indicating stronger 
correlation between the IMF component and the ori-
ginal signal;  

Cov(𝑢, 𝑥)…The covariance, measuring the linear 

correlation between 𝑢 (IMF component) and 𝑥 (origi-
nal signal) [21]. 

The process of selecting optimal frequency domain 
features using the correlation coefficient method is as 
follows: initially, the original signal is decomposed 
using VMD to obtain multiple IMF components; each 
IMF component is then transformed using FFT to ex-
tract its frequency domain features; subsequently, the 
Pearson correlation coefficient between each freque-
ncy domain feature and the original signal's spectrum 
is calculated, selecting the component with the highest 
correlation, thereby ensuring the retention of the most 
representative frequency information; finally, this 
component's spectral features are combined with the 
time-domain features obtained from VMD decompo-
sition, to be used as input for subsequent models. 

 Fault Identification Module 

This study presents an FD model for motor rotor 
systems, based on a CNN-BiGRU-Attention archi-
tecture, aimed at classifying faults. This model integra-
tes CNN, BiGRU, and attention mechanisms to fully 
explore the spatio-temporal characteristics of bearing 
fault signals, thereby enhancing classification accuracy 
and generalization capabilities. The structure of the 
model is illustrated in Figure 2. 

Initially, the CNN employs one-dimensional con-
volutions to extract local time-frequency features, 
combined with batch normalization and max pooling 
to reduce data dimensions and enhance feature repre-
sentation capabilities. Subsequently, the BiGRU mo-
dels short-term and long-term dependencies through 
bidirectional information flow, enabling the model to 
concurrently consider historical data and future 
trends, thus capturing temporal features more preci-
sely. To further optimize FE, this study introduces an 
attention mechanism that adaptively adjusts weights to 
highlight critical features and reduce interference from 
redundant information, thereby improving the ac-
curacy and robustness of the model's classification. 
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Fig. 2 Structure of the CNN-BiGRU-Attention model 

 Experimental Validation 

To validate the feasibility of the aforementioned 
method, this study conducts experiments based on the 
rotor-bearing dataset provided by the Federal Uni-
versity of Brazil. 

 Dataset Description 

The Machinery Fault Database (MAFAULDA) is 
a publicly available experimental dataset for FD in ro-
tating machinery systems, developed by the Federal 
University of Brazil. The dataset contains vibration 

signals collected under various rotational speeds and 
load conditions, encapsulating multiple typical fault ty-
pes such as imbalance, horizontal misalignment, and 
vertical misalignment. Each data file contains time-se-
ries vibration signals, suitable for time-domain, 
frequency-domain, and time-frequency domain analy-
ses. 

The dataset includes the normal state of the rotor 
system and nine fault states, with faults categorized ac-
cording to the severity of the fault, as detailed in  
Table 1.

Tab. 1 Rotor system fault types and labels 

Labels Fault Types Parameter Fault Severity 

1 Normal 0  

2 Imbalance 10g·cm 

Mild Fault 3 Horizontal Misalignment 0.5mm 

4 Vertical Misalignment 0.51mm 

5 Imbalance 15g·cm 

Moderate Fault 6 Horizontal Misalignment 1.0mm 

7 Vertical Misalignment 0.63mm 

8 Imbalance 20g·cm 

Severe Fault 9 Horizontal Misalignment 1.5mm 

10 Vertical Misalignment 1.27mm 
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Taking a mild fault in the rotor system as an 
example, the time-domain graph of its normal state 
and the normalized fault state are shown in Figure 3. 

 

Fig. 3 Time-domain signals of different states 
 
As observed from Figure 3, the time-domain sig-

nals of both normal and fault states are chaotic multi-
component signals, making it challenging to classify 
faults from raw data. Hence, it is crucial to incorporate 
effective FE and denoising methods to extract key fe-
ature information, thereby enhancing the accuracy and 
robustness of FD in rotor systems. 

 Experiment on FE 

3.2.1 Time-domain FE Based on VMD Decompo-
sition 

This section presents a case study using data from 
a mild unbalance fault, where the original signal is de-
composed using VMD, resulting in various modal 
components. The time-domain representation of 
these components is illustrated in Figure 4.  

As depicted in Figure 4, the original signal compri-
ses multiple frequency components and is subject to 
substantial noise interference, manifesting as a com-
plex mixed signal. After decomposition, the IMFs 
from IMF1 to IMF4 are obtained, each reflecting the 
time-domain characteristics of different frequency 
bands: IMF1 predominantly represents low-frequency 
time-domain features with a gentle amplitude, likely 
indicating trend information of the signal; IMF2 en-
compasses mid-frequency features, exhibiting more 
pronounced oscillations; IMF3 increases in frequency, 

reflecting mid-to-high frequency time-domain featu-
res and possibly containing impulse information; 
IMF4, with the highest amplitude and frequency, dis-
plays complex high-frequency characteristics and ser-
ves as the primary carrier of the original signal's time-
domain features. Collectively, the IMFs effectively se-
gregate the time-domain components of the original 
signal across different frequencies, reducing band 
overlap, and providing a reliable foundation for sub-
sequent frequency domain analysis and FD. 

 

Fig. 4 Time-domain graph of VMD decomposition for mild 
unbalance fault data 

 
3.2.2 Extraction and Selection of Frequency-do-
main Features 

Following the VMD decomposition, an FFT is ap-
plied to all component signals to obtain their freque-
ncy-domain features. The frequency-domain graph of 
the mild unbalance fault data is shown in Figure 5. 

 

Fig. 5 Frequency-domain graph of FFT transformed compo-
nents 
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As Figure 5 reveals, the spectrum of the original 
signal, post-VMD decomposition, is partitioned into 
four IMFs, each IMF's FFT spectrum corresponding 
to the energy distribution characteristics of different 
frequency bands. The energy of IMF1 is mainly con-
centrated in the low-frequency area (0–50 Hz), while 
IMF2 and IMF3 cover mid-to-low frequency bands, 
with their energy distribution being relatively disper-
sed and significant spectral amplitudes still present 
around 100 Hz and 240 Hz, indicating these modes 
carry mid-frequency feature information. Notably, 
IMF4 prominently generates a peak in the high-
frequency area (around 450 Hz), underscoring its role 
in encompassing the high-frequency components of 
the original signal. 

 

Fig. 6 Correlation coefficients of IMF components 
 
To enhance the efficacy of feature representation 

and reduce the complexity of model training, this 

study adopts the correlation coefficient method to fil-
ter frequency-domain features. This strategy effecti-
vely minimizes redundant frequency-domain informa-
tion, controls feature dimensions, and enhances the 
correlation between the features and the original sig-
nal, thereby improving the model's recognition ac-
curacy and generalization capabilities. 

The Pearson correlation coefficients calculated for 
the FFT-transformed IMF components are displayed 
in Figure 6. 

Figure 6 indicates that IMF1, IMF2, and IMF3 
exhibit low correlation, suggesting their minor com-
positional presence in the signal. Based on this corre-
lational analysis, IMF4 is identified as the optimal cho-
ice for FE and FD. Consequently, this frequency-do-
main feature is combined with the time-domain featu-
res obtained from VMD decomposition to form a 
multi-channel feature matrix. 

 Fault Identification Based on CNN-BiGRU-
Attention Model 

In order to explore the superiority of the CNN-
BiGRU-Attention deep learning model proposed in 
this study, a comparative analysis was conducted with 
several baseline models including the one-dimensional 
Convolutional Neural Network (1D-CNN), two-di-
mensional Convolutional Neural Network (2D-
CNN), LSTM, CNN-BiGRU, and CNN-LSTM. 

The experiments were performed in a VScode en-
vironment, with the specific configuration settings of 
the CNN-BiGRU-Attention model presented in  
Table 2.

Tab. 2 Structural and parameter configuration of the CNN-BiGRU-Attention network model 

No. Model name Parameters of  The Model Size of  Output Activation Function 

1 Conv1D_1 5→32,kernel_size=3,padding=1 32×32×1024 ReLU 

2 BatchNorm_1 32 32×32×1024 - 

3 MaxPooling_1 kernel_size=2,stride=2 32×32×512 - 

4 Conv1D_2 32→64,kernel_size=3,padding=1 32×64×512 ReLU 

5 BatchNorm_2 64 32×64×512 - 

6 MaxPooling_2 kernel_size=2,stride=2 32×64×256 - 

7 Conv1D_3 64→128,kernel_size=3,padding=1 32×128×256 ReLU 

8 BatchNorm_3 128 32×128×256 - 

9 MaxPooling_3 kernel_size=2,stride=2 32×128×128 - 

10 BiGRU_1 128→128,bidirectional=True 32×128×256 Tanh 

11 BiGRU_2 256→64,bidirectional=True 32×128×128 Tanh 

12 Attention - 32×1×128 - 

13 Linear_1 128→64 32×1×64 ReLU 

14 Dropout p=0.1 32×1×64 - 

15 Linear_2 64→10 32×1×10 - 
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Fig. 7 t-SNE feature distribution maps of various models 
 
After the decomposition via VMD and transfor-

mation through FFT, the resulting multi-feature 

matrix was divided into training, validation, and test 

sets in a 7:2:1 ratio. The t-SNE feature distribution 

maps for each model are shown in Figure 7. 

From the t-SNE feature distribution maps illustra-

ted in Figure 7, it can be observed that 1D-CNN and 

2D-CNN primarily rely on local FE. Although they 

are capable of learning certain time-frequency featu-

res, there remains a significant overlap in features 

across different categories, resulting in lower discrimi-

nability. LSTM and CNN-LSTM enhance feature 

clustering through temporal modeling, but some cate-

gory boundaries remain indistinct, particularly under 

complex operational conditions where they are 

susceptible to noise interference. In contrast, CNN-

BiGRU, by incorporating bidirectional GRU, not only 

enhances temporal feature learning but also facilitates 

greater separation among category features, thereby 

improving classification stability. Further incorpora-

tion of the attention mechanism in the CNN-BiGRU-

Attention model effectively concentrates on critical fe-

ature regions, significantly enhancing the ability to 

distinguish between categories. This results in more 

compact feature distributions and clearer boundaries 

between categories, ultimately achieving optimal fea-

ture clustering. These results validate that the FE 

paired with the attention mechanism in the CNN-

BiGRU-Attention model can fully explore the time-

frequency characteristics of fault signals, thereby 

enhancing the accuracy and robustness of rotor sys-

tem fault classification. 

Further calculations of the fault classification con-

fusion matrices for each model are shown in Figure 8.  

As indicated in Figure 8, where C1 to C10 corre-

spond to the fault types listed in Table 2, the CNN-

BiGRU-Attention model demonstrates superior per-

formance in fault classification tasks. It exhibits stron-

ger FE and discriminative capabilities; across all cate-

gories, it achieves higher accuracy rates, particularly in 

complex fault conditions such as C8 and C9, where it 

shows the lowest misclassification rates, thus display-

ing robust performance. In comparison, 1D-CNN 

and 2D-CNN have certain misjudgments under com-

plex patterns, and while LSTM has temporal modeling 

capabilities, its overall accuracy does not match that of 

the hybrid models. Both CNN-LSTM and CNN-

BiGRU show stable performance across multiple ca-

tegories, but they are outperformed by the CNN-

BiGRU-Attention model, which can focus on critical 

feature areas and effectively elevate classification per-

formance under complex operational conditions. 

To comprehensively assess the performance of the 

models, further calculations of performance metrics 

for each model were undertaken, with the results pre-

sented in Table 3. 
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Fig. 8 Confusion matrices of fault classification for various models 

Tab. 3 Performance metrics of various FD models 

Model Accuracy Precision Recall F1 Kappa Coefficients Jaccard Coefficients 

1DCNN 0.9888 0.9893 0.9897 0.9894 0.9876 0.9793 

2DCNN 0.9710 0.9735 0.9725 0.9721 0.9677 0.9478 

LSTM 0.9799 0.9798 0.9821 0.9808 0.9776 0.9630 

CNN-LSTM 0.8938 0.9069 0.8846 0.729 0.8815 0.8266 

CNN-BiGRU 0.8438 0.8370 0.8421 0.8377 0.8262 0.7302 

The Proposed Model 0.9958 0.9961 0.9963 0.9962 0.9954 0.9924 

 
Table 3 demonstrates that the CNN-BiGRU-

Attention model outperforms in all performance me-
trics, particularly excelling in accuracy (99.58%), pre-
cision (99.61%), and F1-score (99.63%), all of which 
approach the maximum achievable values. The 1D-
CNN and 2D-CNN models also perform commenda-
bly but are slightly inferior to the CNN-BiGRU-
Attention model. In contrast, the CNN-LSTM and 
CNN-BiGRU models exhibit lower performance, 
especially in terms of F1-score and Jaccard index. 
Overall, the CNN-BiGRU-Attention model exhibits 
the most optimal comprehensive performance in this 
task. 

 Conclusion 

To ensure the efficiency and accuracy of the FD 
system for electric motor rotor systems, this study 
proposes an FD method for electric motors based on 
FE and the CNN-BiGRU-Attention model, with the 
following main conclusions: 

• 1) Utilizing VMD to decompose electric mo-

tor fault signals, combined with FFT for 

frequency domain FE, effectively eliminates 

noise and redundant information from the 

signals, providing high-quality signal inputs 

for subsequent fault classification. 

• 2) The FE capabilities of the CNN-BiGRU 

model, enhanced by the attention mechanism, 

allow the model to automatically focus on cri-

tical features within the fault signals. This ex-

traction of representative fault information 

enhances the discriminative ability of the fea-

tures and increases the robustness of the mo-

del. 

• 3) The CNN-BiGRU-Attention model pro-

posed in this study surpasses a 99% threshold 

in all metrics, particularly excelling in ac-

curacy, precision, and F1-score. It signifi-

cantly outperforms other FD models such as 

1D-CNN, 2D-CNN, LSTM, CNN-LSTM, 

and CNN-BiGRU, establishing its superior 

classification effectiveness. 
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