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To enhance the accuracy of fault diagnosis (FD) in motor rotor systems, this study introduces a novel
method that leverages feature extraction (FE) combined with a CNN-BiGRU-Attention deep learning
model. Initially, the time-domain features of the vibration signals are extracted using Variational Mode
Decomposition (VMD), which also effectively denoises the data. Subsequently, the frequency-domain
features of the vibration signals are extracted via Fast Fourier Transform (FFT). The aggregated features
are then fed into the CNN-BiGRU-Attention model to perform fault classification. In this model, the
Convolutional Neural Network (CNN) module extracts local spatial features, the Bidirectional Gated
Recurrent Unit (BiGRU) module models the temporal dependencies, and the Attention mechanism
enhances the focus on critical fault information, thereby improving the model's classification perfor-
mance. Experimental results demonstrate that the proposed FD method achieves an accuracy of 99.58%.
Compared to other commonly used models, the performance metrics of our model show significant ad-
vantages and superior performance.
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1 Introduction

The rotor system of an electric motor constitutes a
critical component in large-scale mechanical equip-
ment, directly influencing the performance and safety
of the apparatus. Accurate diagnosis of faults within
the rotor system is paramount for preventing equip-
ment downtime, extending operational longevity, and
reducing maintenance costs [1].

FD based on vibration signals currently stands as a
prevalent method for mechanical fault detection. Me-
chanical vibration signals exhibit characteristics of im-
balance and non-linearity. Extracting effective featu-
res from these signals is a prerequisite for FD [2]. Re-
search documented in Reference [3] employs Variati-
onal Mode Decomposition (VMD) for the adaptive
decomposition of complex signals and enhances FE
through the integration of Variable Step-Size Filtering
Waveform VMD (VFW-VMD), thereby improving
the signal processing's noise resistance and robust-
ness. Reference [4] utilizes Fast Fourier Transform
(FFT) for frequency domain analysis, combined with
Sparse Discrete Fourier Transform (SparseDFT) to
enhance computational efficiency, which is widely
used in signal processing and frequency analysis.
Furthermore, Reference [5] applies the VMD method
to decompose vibration signals of rolling bearings to
obtain multiple modal components. Subsequent
spectral analysis of these modal components through

FFT allows for the extraction of principal fault
characteristics, thereby enhancing the accuracy of the
diagnosis.

In recent years, deep learning has been extensively
applied in the FD of mechanical equipment. Among
the various deep learning algorithms, Convolutional
Neural Networks (CNN) [6] and Recurrent Neural
Networks (RNN) [7] have demonstrated exceptional
performance. However, the use of a single CNN or
RNN presents certain limitations in handling the tem-
poral and spatial features of complex signals. Con-
sequently, models that combine features of CNNs and
RNNs have been proposed. Reference [8] introduces
a deep model based on CNN and Long Short-Term
Memory (LSTM) networks for the spatial extraction
and temporal modeling of fault characteristics, signifi-
cantly enhancing diagnostic precision. Reference [9]
describes a model that integrates Multi-Scale CNNs
with Bidirectional Gated Recurrent Units (BiGRU)
for extracting spatial and temporal features in high-
noise environments, thereby improving FD accuracy.
Reference [10] proposes a hybrid model combining
Multi-Layer Perceptrons (MLP) with LSTM, achieving
dual functionality in bearing FD and remaining life
prediction.

This study introduces an FD method for rotor sys-
tems based on FE and a CNN-BiGRU-Attention mo-
del. We utilize VMD and FFT to extract time-
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frequency domain features from vibration signals,
which serve as inputs for the constructed CNN-
BiGRU-Attention model to diagnose rotor system
faults. The CNN extracts local features, the BiGRU
captures temporal dependencies, and the Attention
mechanism enhances key features, all aimed at impro-
ving diagnostic accuracy.
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2 Methodology for FD in Rotor Systems

In order to effectively extract fault characteristic
information from nonlinear, non-stationary vibration
signals and enhance the precision of FD in rotor sys-
tems, this study introduces an FD methodology based
on FE and a CNN-BiGRU-Attention model. The
principle of this method is illustrated in Figure 1.
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Fig. 1FD model based on FE and CNN-BiGRU-Attention

The diagnostic model for rotor systems based on
the FE and CNN-BiGRU-Attention model comprises
an FE module and a fault identification module.

e 1) FE Module: Initially, the raw signal is de-
composed into time domain components
using VMD, from which time domain featu-
res are extracted. Subsequently, these compo-
nents undergo an FFT to derive frequency
domain features. The correlation coefficients
of these frequency domain features are calcu-
lated, and the optimal frequency domain
components are combined with the time do-
main features post-VMD decomposition.

e 2) FaultIdentification Module: The combined
time-frequency domain features are proporti-
onally divided into datasets. These datasets
are then utilized as inputs for the CNN-
BiGRU-Attention model to classify faults.

2.1 FE Module

2.1.1 VMD Decomposition

VMD is a classical algorithm for time-frequency
signal analysis. Compared to the traditional Empirical
Mode Decomposition (EMD), VMD is grounded in a

more robust mathematical framework and exhibits su-
perior decomposition capabilities. VMD transforms
the signal decomposition process into a non-recursive
mathematical optimization problem by constructing a
variational problem. Solutions are iteratively sought to
optimally decompose the signal into its modal compo-
nents, termed IMFs. This method effectively suppres-
ses mode mixing, thereby significantly enhancing de-
composition efficiency and robustness [11-13].

The core principle of the VMD algorithm is to re-
formulate the signal decomposition problem into a
non-recursive variational constraint optimization pro-
blem. The objective is to iteratively extract k modal
components, Uy (t), from the original signal, minimi-
zing the cumulative bandwidth of these components
while satisfying the conditions for signal recon-
struction. Specifically, the VMD algorithm aims to mi-
nimize the following objective function:

K j _
min 2.0, (5(0 + —j *u, (1) e_""kti

{ug Hoy k=1 7Tt

Where:

Uk (t)... The k-th modal component;

Wy ... The central frequency of the k-th modal
component;

©)

0¢... The time-domain detivative operator;
6(t)... The unit impulse function.
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The optimization framework is further elaborated
by incorporating Lagrange multipliers A« and a penalty
factor o, thus formulating a variational problem. Ulti-
mately, through iterative updates of the central freque-
ncies and modal components, the signal’s modal com-
ponents are resolved [14-15].

2.1.2 FFT Transformation and Frequency Do-
main Feature Selection
2.1.2.1 FFT Transformation

FFT is an efficient algorithm for performing the
DFT. It converts time-domain signals into frequency-
domain signals, thereby enabling rapid analysis of
spectral characteristics [10].

The primary operational steps of the FFT include
the following components. Initially, the input vibra-
tion signal x(t) is sampled to yield a discrete time-do-
main signal x[n]. Subsequently, the FFT algorithm is
employed to transform this discrete time-domain sig-
nal into a frequency-domain signal X[k], facilitating
the acquisition of amplitude and phase information
for different frequency components [17]. Based on
this, spectral features can be further extracted, inclu-
ding the Magnitude Spectrum and PSD. The Magni-
tude Spectrum is utilized to characterize the energy
distribution of the signal, and its computation is ex-
pressed by the formula:

| XTk] = VRe(X[A])® +Im(X[K])? @
The PSD describes the power distribution across

vatious frequencies. The formula for computing the
PSD is as follows:

PSD[K] = ﬁ | XTKIE. G)

Where:

N...The number of points in the FFT;

fs... The sampling frequency;

X[k]... The FFT amplitude of the k-th frequency
point.

The efficiency of FFT in computation and FE ren-
ders it an essential tool for analyzing the spectral pro-
perties of signals.

FFT translates the optimal modal component from
the time domain to the frequency domain, calculating
the signal's spectral characteristics. These spectral pro-
perties primarily include the Magnitude Spectrum and
the PSD. Through these frequency domain features,
the energy distribution of the signal at different
frequencies can be revealed [18-20].

2.1.2.2 Frequency Domain Feature Selection

To reduce redundancy in frequency domain featu-
res, minimize the interference of irrelevant informa-
tion, and enhance the model's ability to recognize key
frequency components, the method of correlation co-
efficients is employed for feature selection, choosing
components with the highest correlation with the ori-
ginal signal for feature combination.

Common correlation coefficient methods include
Pearson cotrelation coefficient, Spearman's rank
correlation coefficient, and Kendall's rank correlation
coefficient. This study utilizes the Pearson correlation
coefficient due to its simplicity, sensitivity to linear re-
lationships, and effective measurement of trend con-
sistency between the IMF and the original signal in the
frequency domain, making it suitable for rapid se-
lection of representative frequency domain features.
The formula is as follows:

Cov(u, x)

r= .
\/ Var(u)- Var(x)

Where:

7...The Pearson correlation coefficient, ranging
from [—1,1], with values closer to 1 indicating stronger
correlation between the IMF component and the ori-
ginal signal;

Cov(u,x)...The covariance, measuring the linear
correlation between u (IMF component) and x (origi-
nal signal) [21].

The process of selecting optimal frequency domain
features using the correlation coefficient method is as
follows: initially, the original signal is decomposed
using VMD to obtain multiple IMF components; each
IMF component is then transformed using FFT to ex-
tract its frequency domain features; subsequently, the
Pearson correlation coefficient between each freque-
ncy domain feature and the otiginal signal's spectrum
is calculated, selecting the component with the highest
correlation, thereby ensuring the retention of the most
representative frequency information; finally, this
component's spectral features are combined with the
time-domain features obtained from VMD decompo-
sition, to be used as input for subsequent models.

2.2 Fault Identification Module

*

This study presents an FD model for motor rotor
systems, based on a CNN-BiGRU-Attention archi-
tecture, aimed at classifying faults. This model integra-
tes CNN, BiGRU, and attention mechanisms to fully
explore the spatio-temporal characteristics of bearing
fault signals, thereby enhancing classification accuracy
and generalization capabilities. The structure of the
model is illustrated in Figure 2.

Initially, the CNN employs one-dimensional con-
volutions to extract local time-frequency features,
combined with batch normalization and max pooling
to reduce data dimensions and enhance feature repre-
sentation capabilities. Subsequently, the BIGRU mo-
dels short-term and long-term dependencies through
bidirectional information flow, enabling the model to
concurrently consider historical data and future
trends, thus capturing temporal features more preci-
sely. To further optimize FE, this study introduces an
attention mechanism that adaptively adjusts weights to
highlight critical features and reduce interference from
redundant information, thereby improving the ac-
curacy and robustness of the model's classification.
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Fig. 2 Structure of the CNN-BiGRU-Attention model

3 Experimental Validation

To validate the feasibility of the aforementioned
method, this study conducts experiments based on the
rotor-bearing dataset provided by the Federal Uni-
versity of Brazil.

3.1 Dataset Description

The Machinery Fault Database (MAFAULDA) is
a publicly available experimental dataset for FD in ro-
tating machinery systems, developed by the Federal
University of Brazil. The dataset contains vibration

Tab. 1Rotor system fanlt types and labels

signals collected under various rotational speeds and
load conditions, encapsulating multiple typical fault ty-
pes such as imbalance, horizontal misalignment, and
vertical misalignment. Each data file contains time-se-
ries vibration signals, suitable for time-domain,
frequency-domain, and time-frequency domain analy-
ses.

The dataset includes the normal state of the rotor
system and nine fault states, with faults categorized ac-
cording to the severity of the fault, as detailed in
Table 1.

Labels Fault Types Parameter Fault Severity
1 Normal 0
2 Imbalance 10g-cm
3 Horizontal Misalignment 0.5mm Mild Fault
4 Vertical Misalignment 0.51mm
5 Imbalance 15g'cm
6 Horizontal Misalignment 1.0mm Moderate Fault
7 Vertical Misalignment 0.63mm
8 Imbalance 20g'cm
9 Horizontal Misalignment 1.5mm Severe Fault
10 Vertical Misalignment 1.27mm
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Taking a mild fault in the rotor system as an
example, the time-domain graph of its normal state
and the normalized fault state are shown in Figure 3.
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Fig. 3 Time-domain signals of different states

As observed from Figure 3, the time-domain sig-
nals of both normal and fault states are chaotic multi-
component signals, making it challenging to classify
faults from raw data. Hence, it is crucial to incorporate
effective FE and denoising methods to extract key fe-
ature information, thereby enhancing the accuracy and
robustness of FD in rotor systems.

3.2 Experiment on FE

3.2.1 Time-domain FE Based on VMD Decompo-
sition

This section presents a case study using data from
a mild unbalance fault, where the original signal is de-
composed using VMD, resulting in various modal
components. The time-domain representation of
these components is illustrated in Figure 4.

As depicted in Figure 4, the original signal compri-
ses multiple frequency components and is subject to
substantial noise interference, manifesting as a com-
plex mixed signal. After decomposition, the IMFs
from IMF1 to IMF4 are obtained, each reflecting the
time-domain characteristics of different frequency
bands: IMF1 predominantly represents low-frequency
time-domain features with a gentle amplitude, likely
indicating trend information of the signal; IMF2 en-
compasses mid-frequency features, exhibiting more
pronounced oscillations; IMF3 increases in frequency,

reflecting mid-to-high frequency time-domain featu-
res and possibly containing impulse information;
IMF4, with the highest amplitude and frequency, dis-
plays complex high-frequency characteristics and ser-
ves as the primary carrier of the original signal's time-
domain features. Collectively, the IMFs effectively se-
gregate the time-domain components of the original
signal across different frequencies, reducing band
overlap, and providing a reliable foundation for sub-
sequent frequency domain analysis and FD.
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Fig. 4 Time-domain graph of VMD decomposition for mild
unbalance fanlt data

3.2.2 Extraction and Selection of Frequency-do-
main Features

Following the VMD decomposition, an FFT is ap-
plied to all component signals to obtain their freque-
ncy-domain features. The frequency-domain graph of
the mild unbalance fault data is shown in Figure 5.
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Fig. 5 Frequency-domain graph of FET transformed compo-
nents
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As Figure 5 reveals, the spectrum of the original
signal, post-VMD decomposition, is pattitioned into
four IMFs, each IMF's FFT spectrum corresponding
to the energy distribution characteristics of different
frequency bands. The energy of IMF1 is mainly con-
centrated in the low-frequency area (0-50 Hz), while
IMF2 and IMF3 cover mid-to-low frequency bands,
with their energy distribution being relatively disper-
sed and significant spectral amplitudes still present
around 100 Hz and 240 Hz, indicating these modes
carry mid-frequency feature information. Notably,
IMF4 prominently generates a peak in the high-
frequency area (around 450 Hz), underscoring its role
in encompassing the high-frequency components of
the original signal.
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Fig. 6 Correlation coefficients of IME components

To enhance the efficacy of feature representation
and reduce the complexity of model training, this

study adopts the correlation coefficient method to fil-
ter frequency-domain features. This strategy effecti-
vely minimizes redundant frequency-domain informa-
tion, controls feature dimensions, and enhances the
correlation between the features and the original sig-
nal, thereby improving the model's tecognition ac-
curacy and generalization capabilities.

The Pearson correlation coefficients calculated for
the FFT-transformed IMF components are displayed
in Figure 6.

Figure 6 indicates that IMF1, IMF2, and IMF3
exhibit low correlation, suggesting their minor com-
positional presence in the signal. Based on this corre-
lational analysis, IMF4 is identified as the optimal cho-
ice for FE and FD. Consequently, this frequency-do-
main feature is combined with the time-domain featu-
res obtained from VMD decomposition to form a
multi-channel feature matrix.

3.3 Fault Identification Based on CNN-BiGRU-
Attention Model

In order to explore the superiority of the CNN-
BiGRU-Attention deep learning model proposed in
this study, a comparative analysis was conducted with
several baseline models including the one-dimensional
Convolutional Neural Network (1D-CNN), two-di-
mensional Convolutional Neural Network (2D-
CNN), LSTM, CNN-BiGRU, and CNN-LSTM.

The experiments were performed in a VScode en-
vironment, with the specific configuration settings of
the CNN-BiGRU-Attention model presented in
Table 2.

Tab. 2 Structural and parameter configuration of the CNIN-BiGRU-Attention network model

No. Model name Parameters of The Model Size of Output  Activation Function
1 ConvlD_1 5—32 kernel_size=3,padding=1 32X32x1024 RelLU
2 BatchNorm_1 32 32Xx32x1024 -
3 MaxPooling_1 kernel_size=2 stride=2 32X32%x512 -
4 ConvlD_2 32—64,kernel_size=3,padding=1 32X64%x512 RelLU
5 BatchNorm_2 64 32X64%512 -
6 MaxPooling 2 kernel_size=2 stride=2 32X64X256 -
7 ConvlD 3 64—128 kernel_size=3,padding=1 32X128%256 ReLU
8 BatchNorm_3 128 32X128%X256 -
9 MaxPooling 3 kernel_size=2 stride=2 32X128%X128 -
10 BiGRU_1 128—128 bidirectional=True 32X128%256 Tanh
11 BiGRU_2 256—064 bidirectional=True 32X128X128 Tanh
12 Attention - 32X1%X128 -
13 Linear_1 128—064 32X1X64 Rel.U
14 Dropout p=0.1 32X1X64 -
15 Linear_2 64—10 32Xx1x10 -
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Fig. 7 t-SNE feature distribution maps of various models

After the decomposition via VMD and transfor-
mation through FFT, the resulting multi-feature
matrix was divided into training, validation, and test
sets in a 7:2:1 ratio. The t-SNE feature distribution
maps for each model are shown in Figure 7.

From the t-SNE feature distribution maps illustra-
ted in Figure 7, it can be observed that 1D-CNN and
2D-CNN primarily rely on local FE. Although they
are capable of learning certain time-frequency featu-
res, there remains a significant ovetlap in features
across different categories, resulting in lower discrimi-
nability. LSTM and CNN-LSTM enhance feature
clustering through temporal modeling, but some cate-
gory boundaries remain indistinct, particularly under
complex operational conditions where they are
susceptible to noise interference. In contrast, CNN-
BiGRU, by incorporating bidirectional GRU, not only
enhances temporal feature learning but also facilitates
greater separation among category features, thereby
improving classification stability. Further incorpora-
tion of the attention mechanism in the CNN-BiGRU-
Attention model effectively concentrates on critical fe-
ature regions, significantly enhancing the ability to
distinguish between categories. This results in more
compact feature distributions and clearer boundaries
between categories, ultimately achieving optimal fea-
ture clustering. These results validate that the FE
paired with the attention mechanism in the CNN-

BiGRU-Attention model can fully explore the time-
frequency characteristics of fault signals, thereby
enhancing the accuracy and robustness of rotor sys-
tem fault classification.

Further calculations of the fault classification con-
fusion matrices for each model are shown in Figure 8.

As indicated in Figure 8, where C1 to C10 corre-
spond to the fault types listed in Table 2, the CNN-
BiGRU-Attention model demonstrates superior per-
formance in fault classification tasks. It exhibits stron-
ger FE and discriminative capabilities; across all cate-
gories, it achieves higher accuracy rates, particularly in
complex fault conditions such as C8 and C9, where it
shows the lowest misclassification rates, thus display-
ing robust performance. In comparison, 1D-CNN
and 2D-CNN have certain misjudgments under com-
plex patterns, and while LSTM has temporal modeling
capabilities, its overall accuracy does not match that of
the hybrid models. Both CNN-LSTM and CNN-
BiGRU show stable performance across multiple ca-
tegories, but they are outperformed by the CNN-
BiGRU-Attention model, which can focus on critical
feature areas and effectively elevate classification pet-
formance under complex operational conditions.

To comprehensively assess the performance of the
models, further calculations of performance metrics
for each model were undertaken, with the results pre-
sented in Table 3.
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Fig. 8 Confusion matrices of fanlt classification for various models

Tab. 3 Performance metrics of various FD models

Model Accuracy  Precision

Recall

F1

Kappa Coefficients  Jaccard Coefficients

1DCNN
2DCNN
LSTM
CNN-LSTM
CNN-BiGRU
The Proposed Model

0.9888 0.9893
0.9710 0.9735
0.9799 0.9798
0.8938 0.9069
0.8438 0.8370
0.9958 0.9961

0.9897
0.9725
0.9821
0.8846
0.8421
0.9963

0.9894
0.9721
0.9808
0.729

0.8377
0.9962

0.9876
0.9677
0.9776
0.8815
0.8262
0.9954

0.9793
0.9478
0.9630
0.8266
0.7302
0.9924

Table 3 demonstrates that the CNN-BiGRU-
Attention model outperforms in all performance me-
trics, particularly excelling in accuracy (99.58%), pre-
cision (99.61%), and F1-score (99.63%), all of which
approach the maximum achievable values. The 1D-
CNN and 2D-CNN models also perform commenda-
bly but are slightly inferior to the CNN-BiGRU-
Attention model. In contrast, the CNN-LSTM and
CNN-BiGRU models exhibit lower performance,
especially in terms of Fl-score and Jaccard index.
Overall, the CNN-BiGRU-Attention model exhibits
the most optimal comprehensive performance in this
task.

4 Conclusion

To ensure the efficiency and accuracy of the FD
system for electric motor rotor systems, this study
proposes an FD method for electric motors based on
FE and the CNN-BiGRU-Attention model, with the
following main conclusions:

e 1) Utilizing VMD to decompose electric mo-

tor fault signals, combined with FFT for

frequency domain FE, effectively eliminates

noise and redundant information from the
signals, providing high-quality signal inputs
for subsequent fault classification.

2) The FE capabilities of the CNN-BiGRU
model, enhanced by the attention mechanism,
allow the model to automatically focus on cri-
tical features within the fault signals. This ex-
traction of representative fault information
enhances the discriminative ability of the fea-
tures and increases the robustness of the mo-
del.

3) The CNN-BiGRU-Attention model pro-
posed in this study surpasses a 99% threshold
in all metrics, particularly excelling in ac-
curacy, precision, and Fl-score. It signifi-
cantly outperforms other FD models such as
1D-CNN, 2D-CNN, LSTM, CNN-LSTM,
and CNN-BiGRU, establishing its superior

classification effectiveness.
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