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The article provides an analytical solution for the dynamics of a vehicle chassis designed for both road 
and rail operation, featuring either single or multiple primary linear suspensions using coil springs. It 
derives the equations of motion for a simplified two-axle chassis model that includes both a basic primary 
suspension and a simplified chassis suspension. The study focuses on the simplest calculation model to 
analyze suspension behavior, taking into account the asymmetry in spring stiffness and geometric posi-
tioning. There is an unequal distribution of weight across the vehicle body. An analysis is conducted on 
a comprehensive vehicle model with nine degrees of freedom. The analytical solution is obtained using 
Lagrange equations of the second kind, alongside various calculation techniques such as Laplace trans-
formation. Due to the scope of the article, calculations of all coefficients of the matrices are not presented, 
but a link to other works of the authors is given, where these procedures are presented. The proposed 
analytical solution makes it possible to derive an effective algorithm for the application of computer tech-
nology. The use of the proposed procedures allows determining the permissible asymmetry of vehicles 
for safe driving, taking into account structural asymmetry, kinematic excitation asymmetry (always 
occurs) and suspension asymmetry (almost always occurs). 

Keywords: Vibration, Motion Equations, Rolling stock 

 Introduction 

Accidents occur in road and rail traffic, the causes 
of which are not easily explained. The cause may be 
various influences of both a structural and operational 
nature, e.g. asymmetry of weight distribution, asym-
metry and properties of suspension and dissipative el-
ements of vehicles, asymmetry of kinematic excitation 
of vertical vibrations when crossing unevenness, etc. 
[1, 6]. 

These facts, which are always present in vehicles, 
were the subject of an investigation into the impact of 
asymmetry affecting the vertical oscillations of 
wheeled vehicles (road and rail) at different kinematic 
excitation. Both structural and operational asymmetry 
(asymmetric weight distribution in the construction 
and loading of the vehicles) was examined. This asym-
metry, combined with the uneven kinematic excitation 
of vertical oscillations (due to crossing irregular sur-
faces), can, in extreme cases, cause the wheel to lose 
contact with the road or rail surface, potentially lead-
ing to an accident. The structural design usually as-
sumes complete symmetry of the vehicle. But this as-
sumption cannot be maintained during design or in 
operation (asymmetrical distribution of the vehicle 

and load weight related to the centre of gravity, asym-
metry of the kinematic excitation, etc.). This causes a 
number of operational problems. 

It can be found an enormous literature on this is-
sue (e.g., [2, 3]), but the effect of asymmetry in spatial 
vehicle models is absent in these works. However, 
only partial solutions are provided, such as addressing 
the effects of asymmetry in spatial models using half-
plane models (which assume planar symmetry along 
the vehicle's longitudinal axis). These models may ac-
count for factors like the displacement of the center 
of gravity from the center of the axle spacing, varia-
tions in suspension stiffness, viscous damping, or 
combinations of these factors, but always maintain 
symmetry along the longitudinal axis [2-5]. Most often, 
the problem of vehicle vibration is solved on quarter 
models (two axes of symmetry, longitudinal and trans-
verse, are assumed), with different numbers of bodies, 
which are usually vertically elastically coupled, with 
dissipative elements. The models feature additional 
degrees of freedom with coupled displacements in 
vertical direction. However, these models cannot re-
place the effect of general asymmetry, which has not 
yet been satisfactorily resolved. 
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Given these considerations, it is crucial to examine 
how asymmetry influences the vertical oscillation of 
vehicles by exploring the different sources and con-
sequences of excitation through spatial modeling. 
These models should incorporate key types of asym-
metry relative to the vehicle’s geometric reference 
axes—namely, the perpendicular axes of the wheel-
base and track. In particular, the relevant asymmetries 
include: 

• The distribution of the vehicle’s mass with re-

spect to its geometric axes of symmetry, en-

compassing the location of the center of gra-

vity and the alignment of the principal central 

axes of inertia for both the unloaded structure 

and the fully loaded vehicle. 

• The geometry of the arrangement of elastic 

and dissipative elements in the connections 

between individual bodies of the vehicle sys-

tem, along with their mechanical properties 

(such as spring stiffness and viscous damping 

intensity), assumes small displacements and 

rotations of the system's components, and 

between individual variables the linear 

couplings. 

• Kinematic excitation, referring to the irregu-

larities in the road surface or track profile that 

generate system excitation at the contact in-

terface (wheel–vehicle or wheel–track).These 

types of asymmetries may occur individually 

or in combination; in practice, however, the 

third case is almost always present. 

 Methodology 

Currently, FEM methods (Simpac, Adams, Alaska, 
etc.) are most often used to solve vehicle dynamics, 
which, although they give satisfactory results, do not 
allow the analysis of the influence of individual types 
of asymmetry. The analytical solution, on the other 
hand, allows a better understanding of the processes 
that occur during vertical oscillation due to asym-
metry, either individually or cumulatively. 

 

Fig. 1 Simple spatial model of the wheeled vehicle chassis (four-axle) 
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Where: 
C…Centre of geometry; 
T…Centre of gravity; 
Ajkl…Springs of primary suspension (j = 1, 2 - 

mass m1, m2, k = 1, 2, 3, 4 - quadrant, i = 1, ... n – order 
number of springs in case of multisuspension, our case 
i = 1); 

Bjki…Springs of secondary suspension (j = 0 – 
body mass m, k = 1, 2 - order number of chassis 1, or 
2, i = 1, 4 - mid-point affiliation A111, A141, or A211, 
A241,  

ex, ey…Deviation of gravity centre;  
wT, w1, w2…Vertical displacement of gravity centre;  
φx, φy, φx1, φy1, φx2, φy2…Rotation of the body 

around the central axes of inertia of the masses m, m1, 
m2.  

The analytical solution of the effect of asymmetry 
in the wheeled vehicle chassis required the develop-
ment of an appropriate and simplified spatial model 
(Fig. 1). This model was employed to analyze various 
cases of asymmetry, enabling the comparison and va-
lidation of results obtained through different approa-
ches—experimental as well as theoretical (including 
analytical, numerical, and simulation methods).  The 
vehicle body is represented as a stiff flat bodywith 
mass m, considering an non-uniform distribution of 
mass (the center of gravity is offset from the geometric 

center by ex and ey). This asymmetry causes a rotation 
of the principal central axes of inertia relative to the 
axes of geometric symmetry. The chassis are repre-
sented by rigid plates with masses m1 and m2, assuming 
symmetric mass distribution, i.e., the center of gravity 
T1 ≡ C1 and T2 ≡ C2. The principal central axes of in-
ertia are aligned with the geometric symmetry axes. As 
shown in Fig. 1, this system possesses nine degrees of 
freedom. 

 Solution and Discussion 

The solution assumes body stiffness, small displa-
cements and rotations, and linear spring characteris-
tics. It considers only the vertical displacement of any 
arbitrary point on a body (m, m1 m2) determined by the 
change in the position of the body's center of gravity 
(w, w1,w2)) and the displacement caused by the rotati-
ons φx and φy, φx1 and φy1, φx2 and φy2 of the principal 
axes of inertia of the masses (m, m1 m2), together with 
the distances of these masses from the reference 
point. The geometry of the secondary spring and the 
asymmetry in the stiffness parameters are also taken 
into account. 

Determination of oscillation in vertical direction 
were derived using Lagrange's equations. 

Kinetic energy of bodies: 
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Where:  
Jx, Jy, Jx1, Jy1, Jx2, Jy2…Moments of inertia of the 

body and chassis to the central axes of the individual 
bodies;  

m, m1, m2…Mass of bodies (frame, chassis);  
Dxy…Frame deviation moment;  

w, ẇ1, ẇ2…Velocities of displacement of the cen-
tres of gravity of bodies; 

φ̇
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y2
…Angular velocity of rota-

tion of masses. 
Potential energy Ep of chassis models m1 and m2 

and frame models m. 
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Following relations are representing the vertical displacements of chassis springs supports. 
Body m1, j = 1 

Point Vertical displacement Stiffness constant 

(3a) 

A111 w111= w1- y
111

∙φ
x1

+x111∙φ
y1

- h111 k111 

A121 w121= w1- y
121

∙φ
x1

-x121∙φ
y1

- h121 k121 

A131 w131= w1+ y
131
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-x131∙φ
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- h131 k131 

A141 w141= w1+ y
141

∙φ
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- h141 k141 

Body m2, j = 2 
Point Vertical displacement Stiffness constant 

(3b) 

A211 w211= w2- y
211

∙φ
x2

+x211∙φ
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- h211 k211 

A221 w221= w2- y
221
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A231 w231= w2+ y
231
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- h231 k231 

A241 w241= w2+ y
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- h241 k241 
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In the case of the above model (Fig. 1), the body 
m is suspended in the chassis axis by one spring on 
each side.  

To designate the individual points where the 
springs act. The numbering system employed to divide 
the chassis into four sections is not applicable in this 
case. Instead, the impact points in springs positions on 

the chassis are labeled as Bjki, with the coordinates of 
these points represented as xjki, yjki. Here, j = 0 refers 
to the chassis, k = 1 or 2 refers to the numbering of 
the chassis (1 or 2), and i = 1 or 4 corresponds to the 
geometry half and points A111 and A141, respectively. 

Vertical displacement of frame: 

Point Vertical displacement Stiffness constant 

(4) 
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After modification, the relations (3a, 3b, 4) are sub-

stituted into (1) and (2), which are also modified and 

substituted into Lagrange's equations of the second 

order 

d
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Where:  
qj…Generalized coordinates for j = 1, 2 …. 9, (qj 

= w, w1, w2, φx, φy, φx1, φy1, φx2, φy2);  
Qj…Generalized forces, including kinematics exci-

tation.  
After substitution, arranging and performing the 

appropriate derivations according to the individual co-
ordinates, the equations of motion are obtained in ma-
trix form. 
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Where:  
Dxy…Deviation moment;  
Jx, Jy…Moments of inertia related to appropriate 

axes;  
κij…Stiffness matrix elements (they are determined 

by the stiffness constants kjki, dimensions of support 
geometry xjki, yjki and eccentricity ex and ey);  

Qi…Kinematics excitation function (they are de-
termined by the stiffness constants of chassis springs 

kjki and functions of displacement in time h(t) in the 
position of wheel spring support). 

Elements of stiffness matrix κij are (see above) 
functions of constants kjki, dimensions of support ge-
ometry xjki, yjki and eccentricity ex and ey – see Fig. 1. 
Calculation of particular elements κij is beyond the 
scope of the article and it is presented e.g. [1]. 

Right side functions (6) of kinematics excitation 
are determined by relations: 

Q
1
 = 0 Q

2
 = 0 Q

3
 = 0 

(7) 

Q
4
 = k111∙h111+k121∙h121+k131∙h131+k141∙h141 

Q
5
 = k211∙h211+k221∙h221+k231∙h231+k241∙h241 

Q
6
 = -k111∙h111∙y

111
-k121∙h121∙y

121
+k131∙h131∙y

131
+k141∙h141∙y

141
 

Q
7
 = k111∙h111∙x111-k121∙h121∙x121-k131∙h131∙x131+k141∙h141∙x141 

Q
8
 = -k211∙h211∙y

211
+k221∙h221∙y

221
-k231∙h231∙y

231
+k241∙h241∙y

241
 

Q
9
 = k211∙h211∙x211-k221∙h221∙x221-k231∙h231∙y

231
+k241∙h241∙x241 



September 2025, Vol. 25, No. 4 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489 

e-ISSN 2787–9402 

 

indexed on http://www.webofscience.com and http://www.scopus.com 535  

Where:  
hjki = kjki(t)…The temporal profile of the kinematic 

excitation at each axle position and their sequence.  
For further solution or general formulation of its 

procedure and creation of an algorithm suitable for 
computer processing of the generalized system (6) it is 
necessary to modify it into the form 

Mh∙q̈j
+Mk∙q

j
 = Q

j
(t) (8) 

Where:  

Mh(ij)…Mass matrix;  
Mk…Stiffness matrix;  
Qj…Kinematic excitation matrix. 
Multiplying equation (8) by the diagonal  

matrix D(dij) from left side, where dij = 1/αij –  

diagonal   elements   of   mass   matrix   Mh(ij),   then 

d11 = J
x

-1 d22= J
y

-1 d33= m-1 d44= m1
-1 d55= m2

-1 
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We get the equation in form: 

M∙q̈
j
+K∙q

j
 = Fj(t) (9) 

Where:  
M…Mass matrix (= DMh); 
K…Stiffness matrix (= DMk); 
Fj(t)…Forces vector (= dijQj, where i = j).  
Mass matrix is possible to express in form M = 

E+S and equation (9) is transformed into the form: 

(E+S)∙q̈
j
 + K∙q

j
 = Q

j
(t) (10) 

Where:  
E…Unit matrix; 
S…Mass matrix. 
Elements sij of mass matrix S are determined by 

equations s11 = s22 = 0, sij=0 for i = 3, … 9; j = 3, … 
.9, and s12 = -Dxy/Jx, s21 = -Dxy/Jy determine the impact 
of a mass distribution which is asymmetrical. Specifi-
cally, this effect can involve the angular displacement 
of the principal axes of inertia with respect to the cen-
tral axes that are parallel to the geometric symmetry 
axes of the body, such as those of a plate or a vehicle. 

Similarly, the elements aij of the matrix K are de-
termined by dividing the i-th row of the stiffness ma-
trix by the i-th element on the diagonal of the inertia 
matrix [1] (the elements aij are chosen aij ≠ 0 for gen-
erality reasons). Similarly, the excitation functions Fj(t) 
are determined from the functions Qj(t) and the vector 

of excitation forces is also chosen Fj (t) ≠ 0for gener-
ality reasons. 

 The required quantities of displacements and ro-
tations are denoted by generalized coordinates in the 
above relations as follows: φx(t) →q1(t), φy(t) →q2(t), 
w(t) →q3(t), w1(t) →q4(t), w2(t) →q4(t), φx1(t) →q5(t), 
φy1(t) →q6(t), φx2(t) →q7(t), φy2(t) →q9(t). 

In   a   symmetrical   arrangement   of   the   system 
k111 = k121 = k131 = k141 = k211 = k221 = k231 = k241 = k12 
x111 = x121 = x131 = x141 = x211 = x221 = x231 = x241 = x12 

y111 = y121 = y131 = y141 = y211 = y221 = y231 = y241 = y12 
k011 = k014 = k021 = k024 = k0 
x011 = x014 = x021 = x024 = x0 
y011 = y014 = y021 = y024 = y0 

ex = 0 ey = 0 Dxy = 0 → s12 = s21 = 0 

and system of motion equations (10) is trans-
formed into the form: 

E∙q̈
j
 + K∙q

j
 = Fj for j = 1, 2, … 9 (11) 

Where stiffness matrix 

K=

[
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The elements of the stiffness matrix depend on the 
spring stiffness values k12, k0 and the positions x12, y12, 
x0, y0. Assuming a fully symmetric system of elastically 
supported and constrained bodies (Fig. 1), The origi-
nal system of nine coupled differential equations sim-
plifies to seven coupled differential equations along 
with two separate harmonic motion equations for q7 
and q9. 

q̈
7
 + a77q

7
 = F7(t) q̈

9
 + a99q

9
 = F9(t) (12) 

Numerical methods, analytical solutions using 
matrix calculus, Lagrange’s method of variation of 
constants, or the Laplace transform can be employed 
to solve the system of inhomogeneous differential 
equations. (8). 

When we apply the Laplace transform (where ini-
tial conditions are equal to zero), we obtain a system 
of linear algebraic equations [1].
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Or: 

[(E+S)p2+K]y
i̅
(p)=F̅i(p) (13a) 

Where:  

y
i̅
(p) and F̅i(p)…Images of functions qj(t) and Fj(t) 

for j = 4 up to 9;  

p…Parameter of Laplace transform.  

The solution of the system of linear algebraic equa-
tions (13) should be done by Cramer's rule. 
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Where:  
D(p)…Determinant of matrix of equations system 

(13) and is equal to: 

D(p)=CA ∑ A2(n-1)p
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n
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 for n = 9 CA=1-s12s21 (15) 

Equations for calculation of the real coefficients A2(n-i) were derived in [7-10], in general, these equations are 
valid for n ≥ 2 and 0 ≤ i <n. 
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Where: 
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aji ajj ajl ajk

ali alj all alk

aki aki akl akk

]  det A21= [

a21 a2i a2j a2l

ai1 aii aij ail

aj1 aji ajj ajl

al1 ali alj all

]  det A21= [

a12 a1i a1j a1l

ai2 aii aij ail

aj2 aji ajj ajl

al2 ali alj all

] 

A0=CA
-1det K   

Calculation of coefficients A2(n-i) for 2 < i < n is 
hard to solve. To calculate the values of these coeffi-
cients it is advisable to use one of the calculation pro-
grams, e.g. MAPLE or MATLAB. 

Determinant Dj(p) in equation (14) is obtained sub-
stitution j-th column of determinant D(p) by vector 

F̅i(p) for i = 4 up to 9 from right side of equation (13). 
The determinant Dji(p) is the algebraic complement of 
the determinant Dj(p) according to the i-th element of 

the j-th column of the vector F̅i(p). 
By adjusting the division between determinants 

Dji(p) and D(p) to determine demanded functions qj(t) 

using back transformation of the images y
j̅
(p). The the-

orem about image convolution can be utilized when 

the product of the image F̅i(p) and transformed ex-
pression is determined.  

The function in equation (15) with real coefficients 
(16) can be substituted by the product of quadratic bi-
nomials. 

∑ A2(n-1)p
2(n-1)=

n

i=0

∏(p2+ωi
2)

n

i=1

 (17a) 

When the product on the right-hand side of (17a) 
is solved, we get the polynomial: 

∑ A2(n-1)p
2(n-1)=

n

i=0

∑ B2(n-i)p
2(n-i)

n

i=0

 (17b) 

Coefficients B2(n-i) can be solved as follows: 
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B2n=1 B2(n-1)= ∑ ωi
2

n

i=1

 B2(n-2)= ∑ ∑ ωi
2ωj

2

n

j=i+1

n-1

i=1

 

(18) B2(n-3)= ∑ ∑ ∑ ωi
2ωj

2ωl
2

n

l=j+1

n-1

j=i+1

n-2

i=1

 B2(n-4)= ∑ ∑ ∑ ∑ ωi
2ωj

2ωl
2ωk

2

n

k=l+1

n-1

l=j+1

n-2

j=i+1

n-3

i=1

 

B2(n-n)=B0= ∏ ωi
2

n

i=1

  

A system of equations to asses ωi, ωj, ωl, … can be 
assembled by coefficients comparison of polynomials 
with the same exponents owing the parameter p2(n-i) lo-
cated at the both sides of the equations (17a, b) A2(n-i) 
= B2(n-i). 

The simple equations are reached when equations 
(18) is compared with the relations describing the cou-
pling of the coefficients of the algebraic equation and 
its root factors. 

f(ω2)=ω2n-A2(n-1)ω
2(n-1)+A2(n-2)ω

2(n-2)-A2(n-3)ω
2(n-3)+(-1)n-1A2ω2+(-1)nA0=0  (19) 

Where:  
ω2…Angular frequency of functions yj(t), for j = 1, 

2, 3, …, n. 
The most challenging aspect of the proposed pro-

cedure is calculating the eigenvalues of the frequency 
equation (19) using an appropriate numerical method. 
It is not only due to the need for numerical precision 
but also because it involves solution of equations (13). 
The right-hand part of equation (14) is defined by the 
solution of (13). 

Since the polynomial of the determinant Dji(p) has 
non-zero coefficients only at even exponents of the 
parameter p in the solved case of undamped oscilla-
tion, and since the ratio of the determinants of (14) is 
a purely rational fractional function, the ratio (14) can 
be decomposed into a sum of partial fractions. 

Dji(p)

D(p)
= ∑

Lji,k

p2+ωk
2

n

k=1

 (20) 

Where the indeterminate coefficient, the constant 
Lji,k belongs to k-th of the partial fraction of the poly-
nomial (20). 

To determine these indeterminate coefficients for 
the i-th element in the sum (20), the determinant Dji(p) 
must be expressed as a polynomial. 

Dji(p)= ∑ Cji,2(n-s)p
2(n-s)

n

s=1

 (21) 

The sum of the partial fractions on the right hand 
side of equation (20) can be rewritten. 

∑
Lji,k

p2+ωk
2

n

k=1

=
1

∏ (p2+ωi
2)n

i=1

[Lji,1 ∏(p2+ωs
2)

n

s=2

+Lji,2 ∏(p2+ωs
2)

n

s=1

s≠2

+ ... + 

(22) 

+Lji,k ∏(p2+ωk
2)+ ... +Lji,n ∏(p2+ωs

2)

n-1

s=1

]

n

s=1

s≠k

 

The individual products on the right hand side is given by: 

Lji,k= ∏(p2+ωs
2)

n

s=1

s≠k

=Lji,k ∑ Ek,2(n-s)p
2(n-s)

n

p=1

p≠k

 
(23) 

Where the coefficients of the polynomial of the right-hand side of equation (23) are: 

Ek,2(n-1)=1 
Ek,2(n-2)= ∑ ωp

2

n

p=1

p≠k

 Ek,2(n-3)= ∑ ∑ ωp
2

n

q=p+1

q≠k

n-1

p=1

p≠k

 

(24) 

Ek,2(n-4)= ∑ ∑ ∑ ωp
2ωq

2ωr
2

n

r=q+1

r≠k

n-1

q=p+1

q≠k

n-2

p=1

p≠k

 Ek,2(n-n)= ∏ ωp
2

n

p=1

p≠k

 

Substituting (21) and (22) into equation (20), taking into account (24), we get: 

∑ Cji,2(n-s)p
2(n-s)

n

s=1

= ∑ Lji,k ∑ Ek,2(n-s)p
2(n-s)

n

s=1

n

k=1

 (25) 
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And comparing the coefficients at the same expo-
nents of the parameter p in the polynomial of the nu-
merators of  both fractions (20), a system of n-linear 

algebraic equations for the calculation of the unknown 
uncertain coefficients Lij,k is obtained. 

∑ Lji,kEk,2(n-s)
n
k=1 =Cji,2(n-s)     for s = 1, 2, …, n (26) 

Where:  
The index j = 1 ÷ n…A part of the quantities yj;  
The index i = 4 ÷ n…The excitation function 

vector F̅i(p) appropriate elements; 
The index k = 1 ÷ n…The partial fraction.   
The results of the decomposition of the ratio of 

determinants (20) is partial fraction. 
Equation   (26)   is   expressed   in   matrix   form 

[
 
 
 
 
 
 
E1,2(n-1) E2,2(n-1) ⋯ Ek,2(n-1) ⋯ En,2(n-1)

E1,2(n-2) E2,2(n-2) ⋯ Ek,2(n-2) ⋯ En,2(n-2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
E1,2(n-k) E2,2(n-k) ⋯ Ek,2(n-k) ⋯ En,2(n-k)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
E1,0 E2,0 ⋯ Ek,0 ⋯ En,0 ]

 
 
 
 
 
 

∙

[
 
 
 
 
 
 
Lji,1

Lji,2

⋮
Lji,k

⋮
Lji,n]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
Cji,2(n-1)

Cji,2(n-2)

⋮
Cji,2(n-k)

⋮
Cji,0 ]

 
 
 
 
 
 

 

where the factors Ek,2(n-k)  are given by (23).  
After determining the constants Lji,k and  
substituting them into (20) and (14), we obtain  

the  relation  for  the  calculation  of  the  image  y ̅
j
(p) 

y
j̅
(p)= ∑ (-1)j+i

n

i=4

F̅i(p) ∑
Lji,k

p2+ωk
2

n

k=1

 

After back-transformation we get the convolution 
integral. 

q
j
(t) = ∑ (-1)j+i

n

i=4

∑
Lji,k

ωk

n

k=1

∫ Fi(τ)sin ωk(t-τ) dτ

t

0

 (27) 

Where:  
ωk…The result of formula (19).  
When the unknowns qj(t) are calculated as a results 

of equations system (8), the variables in the system (6) 
are assessed. Now it is simple to achieve the vertical 
displacement at all points of chassis or frame. 

 Conclusion 

The objective of the article was to create and verify 
a method for the analytical solution of the assessment 
of the influence of structural and operational asymme-
tries of various types at different kinematic excitation, 
steady and transient, compared to the motion of a 
symmetrically arranged vehicle system. On the basis of 
the derived relationships, the permissible level of 
asymmetry can be determined for a specific vehicle 
while maintaining the driving safety and stability of the 
vehicle. The presented calculation procedure, together 
with the derived equations for the vehicle chassis, ena-
bles the calculation of the forces acting on the wheels 
namely theirs intensity and time profile, assessing the 
extent and permissibility of deformation in single 
spring components and structural components, and 
establishing damping rate to ensure physiological 

comfort during the vehicle’s motion (when transpor-
ting passengers). 

The use of the acquired knowledge will allow to 
adjust the vehicle elements in such a way that in oper-
ation there is no loss of contact of the wheel with the 
roadway and thus no critical situations. 

The proposed solution enables the creation of an 
algorithm for the calculation of vertical displacements 
at arbitrary points of the model of rolling stock chassis 
vehicles with a large range of variants of a particular 
structural arrangement. 
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