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The article provides an analytical solution for the dynamics of a vehicle chassis designed for both road
and rail operation, featuring either single or multiple primary linear suspensions using coil springs. It
derives the equations of motion for a simplified two-axle chassis model that includes both a basic primary
suspension and a simplified chassis suspension. The study focuses on the simplest calculation model to
analyze suspension behavior, taking into account the asymmetry in spring stiffness and geometric posi-
tioning. There is an unequal distribution of weight actoss the vehicle body. An analysis is conducted on
a comprehensive vehicle model with nine degrees of freedom. The analytical solution is obtained using
Lagrange equations of the second kind, alongside various calculation techniques such as Laplace trans-
formation. Due to the scope of the article, calculations of all coefficients of the matrices are not presented,
but a link to other works of the authors is given, where these procedures are presented. The proposed
analytical solution makes it possible to derive an effective algorithm for the application of computer tech-
nology. The use of the proposed procedures allows determining the permissible asymmetry of vehicles
for safe driving, taking into account structural asymmetry, kinematic excitation asymmetry (always
occurs) and suspension asymmetry (almost always occurs).
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1 Introduction

Accidents occur in road and rail traffic, the causes
of which are not easily explained. The cause may be
various influences of both a structural and operational
nature, e.g. asymmetry of weight distribution, asym-
metry and properties of suspension and dissipative el-
ements of vehicles, asymmetry of kinematic excitation
of vertical vibrations when crossing unevenness, etc.
[1, 6].

These facts, which are always present in vehicles,
were the subject of an investigation into the impact of
asymmetry affecting the vertical oscillations of
wheeled vehicles (road and rail) at different kinematic
excitation. Both structural and operational asymmetry
(asymmetric weight distribution in the construction
and loading of the vehicles) was examined. This asym-
metry, combined with the uneven kinematic excitation
of vertical oscillations (due to crossing irregular sur-
faces), can, in extreme cases, cause the wheel to lose
contact with the road or rail surface, potentially lead-
ing to an accident. The structural design usually as-
sumes complete symmetry of the vehicle. But this as-
sumption cannot be maintained during design or in
operation (asymmetrical distribution of the vehicle

and load weight related to the centre of gravity, asym-
metry of the kinematic excitation, etc.). This causes a
number of operational problems.

It can be found an enormous literature on this is-
sue (e.g., [2, 3]), but the effect of asymmetry in spatial
vehicle models is absent in these works. However,
only partial solutions are provided, such as addressing
the effects of asymmetry in spatial models using half-
plane models (which assume planar symmetry along
the vehicle's longitudinal axis). These models may ac-
count for factors like the displacement of the center
of gravity from the center of the axle spacing, vatia-
tions in suspension stiffness, viscous damping, or
combinations of these factors, but always maintain
symmetry along the longitudinal axis [2-5]. Most often,
the problem of vehicle vibration is solved on quarter
models (two axes of symmetry, longitudinal and trans-
verse, are assumed), with different numbers of bodies,
which are usually vertically elastically coupled, with
dissipative elements. The models feature additional
degrees of freedom with coupled displacements in
vertical direction. However, these models cannot re-
place the effect of general asymmetry, which has not
yet been satisfactorily resolved.
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Given these considerations, it is crucial to examine
how asymmetry influences the vertical oscillation of
vehicles by exploring the different sources and con-
sequences of excitation through spatial modeling.
These models should incorporate key types of asym-
metry relative to the vehicle’s geometric reference
axes—namely, the perpendicular axes of the wheel-
base and track. In particular, the relevant asymmetries
include:

e The distribution of the vehicle’s mass with re-
spect to its geometric axes of symmetry, en-
compassing the location of the center of gra-
vity and the alignment of the principal central
axes of inertia for both the unloaded structure
and the fully loaded vehicle.

e The geometry of the arrangement of elastic
and dissipative elements in the connections
between individual bodies of the vehicle sys-
tem, along with their mechanical properties
(such as spring stiffness and viscous damping

intensity), assumes small displacements and

rotations of the system's components, and

between individual variables the linear
couplings.

e Kinematic excitation, referring to the irregu-
larities in the road surface or track profile that
generate system excitation at the contact in-
tetface (wheel-vehicle or wheel-track). These
types of asymmetries may occur individually
or in combination; in practice, however, the

third case is almost always present.

2 Methodology

Currently, FEM methods (Simpac, Adams, Alaska,
etc.) are most often used to solve vehicle dynamics,
which, although they give satisfactory results, do not
allow the analysis of the influence of individual types
of asymmetry. The analytical solution, on the other
hand, allows a better understanding of the processes
that occur during vertical oscillation due to asym-
metry, either individually or cumulatively.
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Fig. 1S8imple spatial model of the wheeled vebicle chassis (four-axite)
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Where:
C...Centre of geometry;
T...Centre of gravity;

Ajw...Springs of primary suspension (f = 1, 2 -
mass 71, m, £ =1,2,3,4 - quadrant, /=1, ... n— order
number of springs in case of multisuspension, our case

=1y

Bi...Springs of secondary suspension (j = 0 —
body mass 7, £ = 1, 2 - order number of chassis 1, or
2,i=1,4 - mid—point affiliation A, A, or Ay,
Az,

¢ ¢...Deviation of gravity centre;

wr, w1, wa... Vertical displacement of gravity centre;

Oxs Oy Oxly Py, P2, Pp...Rotation of the body
around the central axes of inertia of the masses #, 7,
1z

The analytical solution of the effect of asymmetry
in the wheeled vehicle chassis required the develop-
ment of an appropriate and simplified spatial model
(Fig. 1). This model was employed to analyze various
cases of asymmetry, enabling the comparison and va-
lidation of results obtained through different approa-
ches—experimental as well as theoretical (including
analytical, numerical, and simulation methods). The
vehicle body is represented as a stiff flat bodywith
mass 7, considering an non-uniform distribution of
mass (the center of gravity is offset from the geometric

1
EKFZMWJF‘ (]ﬁﬂ +

Where:

Jxs [ Jots i1, Jx2, Ji2...Moments of inertia of the
body and chassis to the central axes of the individual
bodies;

m, m, 2. .Mass of bodies (frame, chassis);

D,,...Frame deviation moment;

2 4K
_1
SN

>2Dyip )

1
*ts 2 K2 ”/2+ ]XZ gﬂxZ

center by ¢. and ¢). This asymmetry causes a rotation
of the principal central axes of inertia relative to the
axes of geometric symmetry. The chassis are repre-
sented by rigid plates with masses 7 and 7, assuming
symmetric mass distribution, i.e., the center of gravity
T1 = Ciand Tz = Co. The principal central axes of in-
ertia are aligned with the geometric symmetry axes. As
shown in Fig. 1, this system possesses nine degrees of
freedom.

3 Solution and Discussion

The solution assumes body stiffness, small displa-
cements and rotations, and linear spring characteris-
tics. It considers only the vertical displacement of any
arbitrary point on a body (7, 721 ) determined by the
change in the position of the body's center of gravity
(w, w1,m)) and the displacement caused by the rotati-
ons . and @), g« and g1, g2 and @y of the principal
axes of inertia of the masses (w, #1 ), together with
the distances of these masses from the reference
point. The geometry of the secondary spring and the
asymmetry in the stiffness parameters are also taken
into account.

Determination of oscillation in vertical direction
were detived using Lagrange's equations.

Kinetic energy of bodies:
1 1 .2
*3 2 K 11/1 ]xl gﬂxl 2 ]J/l g0}/14_
z M
2 ])/2 §0]2

w, wy, ... Velocities of displacement of the cen-
tres of gravity of bodies;

Do Py P> Do Vo P .Angular velocity of rota-
tion of masses.
Potential energy E, of chassis models # and

and frame models 7.

SR @

J=0 £=1,27/=1,4

Followmg relations are representing the vertical displacements of chassis springs supports.

Body 721,/ =
Point Vertical displacement Stiffness constant
Am I Py g e - b kit
Az W11 =gy 01210~ b1 k121 (3a)
A w1317 M 50X, b k131
Aa 1= 0 TXe - b k141
Body mn, j = 2
Point Vertical displacement Stiffness constant
Ao WA= W27 Dy P TP b1y ka1t
A W21 = W2 Vg1 Prp 221" P 5" han ka2t (3b)
Ao Wys1= Mot D5y P 0=X031°P = bosn k31
Ao w1 = o Doy P o049y hom kst
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In the case of the above model (Fig. 1), the body
m is suspended in the chassis axis by one spring on
each side.

To designate the individual points where the
springs act. The numbeting system employed to divide
the chassis into four sections is not applicable in this
case. Instead, the impact points in springs positions on

the chassis are labeled as By, with the coordinates of

these points represented as xe, ye. Here, 7 = 0 refers

to the chassis, £ =1 or 2 refers to the numbering of

the chassis (1 or 2), and 7= 1 or 4 corresponds to the

geometry half and points 4111 and Ay41, respectively.
Vertical displacement of frame:

Point Vertical displacement Stiffness constant

Boit w11~ W‘J’011'§”X+X011'%‘ M+, te)e, Aot

Bous 14— ”’+J/()14'§”X+X014'§?},‘ Mt - 6) Py ko14 4
Boai w0217 WDy Py mN021°P) Wyt 0y T 6)'0, k021

Bozs Wo24= W+J024'§0X'X024'§ﬂj- 2-0ps = 6P k024

After modification, the relations (3a, 3b, 4) are sub-
stituted into (1) and (2), which are also modified and
substituted into Lagrange's equations of the second

Where:
g;-..Generalized coordinates for j = 1,2 .... 9, (g

= Wy Wi, W2, Py Py Pty Pls P2, P12)3

order Q;...Generalized forces, including kinematics exci-
tation.
d OE, 0E, OF After substitution, arranging and performing the
7 20 o0 + a—P :ij (5) appropriate derivations according to the individual co-
roog o 9 ordinates, the equations of motion are obtained in ma-
trix form.
(/. Dy 00 0 0 0 0 07 gﬂx [#11 %12 %13 %14 %15 %16 mg 07 1%7 197
_DX)' Jy 0 0 0 0 0 0 0 éb] Hp1 Moo Hp3 Mo4 Nog5 Xpg X8 0 gﬁj
0 O 0 0 0 0 0 O w X31 X3p A3z H34 M35 K36 n35 0 v 0
0 0 0 7 0 0 0 0 0 llll Myl M4 K43 Hp4 0 X46  H47 0 0 w Q4
0 0 00 m©O0 000 PN+ #5253 0 w55 0 0 a5y a9 2 1=12 (6)
8 8 8 8 8 ]6‘1 0 8 8 Pal lur #o #63 %4 0 %6 % 0 0| [Pa] |2
])’1 ‘gi’J’l 0 0 0 K74 0 n76 W77 0 0 gﬂjq Q7
0 0 000 00,0 Pal | wp u5 0 s 0 0 g x| [Po2] Qg
- 0 0 00 0 000 ]JQ- -gﬂ.J’z- L 0 0 0 0 95 0 0 X9g  H99 _?yz_ vQ()-
Where: ki and functions of displacement in time /4(?) in the

D,,...Deviation moment;

Jx J-..Moments of inertia related to appropriate
axes;

xy...Stiffness matrix elements (they are determined
by the stiffness constants &, dimensions of support
geometry X, Jii and eccentricity e and e));

Q....Kinematics excitation function (they are de-
termined by the stiffness constants of chassis springs

£

©9,=0

position of wheel spring support).

Elements of stiffness matrix »; are (see above)
functions of constants £, dimensions of support ge-
ometry X, y# and eccentricity ¢. and ¢, — see Fig. 1.
Calculation of particular elements #; is beyond the
scope of the article and it is presented e.g. [1].

Right side functions (6) of kinematics excitation
are determined by relations:

2

O, = kirhint kbt &bz H kb

O, = korrbont koot hooy +kosi bzt tkoar g

9= '/ém'5111%11-/%121'271213’121+’é131'/9131ﬂ131+/é141'/?141ﬂ141

()

O, = kybigxi-£i21ha1x121-£131 0131 %131 T R141biar X

Oy = ~ko11'211951 2210221050 K231 5231953 2410241054

Qg = Aot b xon1-Roo b1 xoo1-kos1 b3 Vo31 +koa1hparxom
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Where:

hiri = kje(?). .. The temporal profile of the kinematic
excitation at each axle position and their sequence.

For further solution or general formulation of its
procedure and creation of an algorithm suitable for
computer processing of the generalized system (0) it is
necessary to moditfy it into the form

My +Meq,= Q) ®

Where:

My(¢). .. Mass matrix;

Myg...Stiffness matrix;

Q... Kinematic excitation matrix.

Multiplying  equation (8) by the
matrix D(dj) from left side, where d; =

diagonal
l/ a; —
diagonal elements of mass matrix M,(¢;), then

dll :];Cl dZZ:A]JA‘1 d33: 777’1 d44: m]l d55: mél
dss= ]| ;1 = ];1 dyg =] ;32 o= ]J;
We get the equation in form:
M-%,+K'qj =F@® )
Where:

M...Mass matrix (= DM,);

K...Stiffness matrix (= DMg);

Fj(#)...Forces vector (= djQ;, where 7 =).

Mass matrix is possible to express in form M =
E+S and equation (9) is transformed into the form:

(E+5),+ Kg. = Q) (10)

Where:

E...Unit matrix;

S...Mass matrix.

Elements s; of mass matrix S are determined by
equations i1 = 52 = 0, ;=0 for /=3, ... 9; /=3, ...
.9, and 512 = -Dyy/ |, 521 = -Dsy/ ], determine the impact
of a mass distribution which is asymmetrical. Specifi-
cally, this effect can involve the angular displacement
of the principal axes of inertia with respect to the cen-
tral axes that are parallel to the geometric symmetry
axes of the body, such as those of a plate or a vehicle.

Similarly, the elements 4; of the matrix K are de-
termined by dividing the /th row of the stiffness ma-
trix by the i-th element on the diagonal of the inertia
matrix [1] (the elements @; are chosen @; # 0 for gen-
erality reasons). Similarly, the excitation functions Fj(z)
are determined from the functions (J/(#) and the vector

[ pPtay, spptan ag a4 a5 a6

suptay pPrayn  as a4 s a6
a3 ap  Pras ay a35 a36
ay ag ayy  pPtay  as 46
as asy as3 asy  PPass  as
a1 ) ag3 a4 ags P tag
an arn a3 a4 ars 76
asq asp as3 ag4 ags ase
a91 a92 93 a94 495 496

of excitation forces is also chosen F; () # Ofor genet-
ality reasons.

The required quantities of displacements and ro-
tations are denoted by generalized coordinates in the
above relations as follows: p.(9) —q1(?), ¢,(H) —q2(9),
m(t) =q3(D), wi(t) —qa(), w2A2) —q4(), pa()) —g5(2),
1) —=q6?), pa(t) =q1(D), p2() —q9(9).

In a symmetrical arrangement of the system

k111 = k121 = k131 = R = kit = koot = kst = kot = Rz

X111 T X121 T X131 T X141 T X211 T X221 T X231 T X241 T X2

D111 =121 =131 = Y141 =211 = Y221 = Y231 =241 = )12

ko1 = Rota = Kozt = Roza = ko
X011 = X014 = X021 = X024 = X0
Jo1r = Jo14 = Yo21 = Y024 =)o
eX:() é‘}‘:O Dmv:0—>‘f12:‘f21:0

and system of motion equations (10) is trans-

formed into the form:

Ej +Kq=F forj=1,2,...9  (11)

Where stiffness matrix

ra; 00 0 0 a4 0 a3 O
0 ap 0 ay a; O 0 0 0
0 0 a3 ay a5 0 0 0 0
0 ap ayy ay O 0 0 0 0
K=l 0 ap a3 0 a5 O 0 0 0
a0 0 0 0 a4 O 0 0
o 0 o0 0 0 0 a4, 0 0
agg 0 0 0 0 0 0 a4 O
L0 0 0 0 0 0 0 0 agl

The elements of the stiffness matrix depend on the
spring stiffness values £12, &9 and the positions x12, y12,
x0,_90. Assuming a fully symmetric system of elastically
supported and constrained bodies (Fig. 1), The origi-
nal system of nine coupled differential equations sim-
plifies to seven coupled differential equations along
with two separate harmonic motion equations for g7
and ¢o.

4, T ang, =150 g4yt awg, = F(@)  (12)

Numerical methods, analytical solutions using
matrix calculus, Lagrange’s method of variation of
constants, or the Laplace transform can be employed
to solve the system of inhomogeneous differential
equations. (8).

When we apply the Laplace transform (where ini-
tial conditions are equal to zero), we obtain a system
of linear algebraic equations [1].

a7 a8 a9 0, @71 [Fi)]
ay; ag a9 | |2, F>(p)
az7 a3g a39 )5 (?) F5(p)
ay7 o ag9 D, ?) F4()
asy asg asg |° g 5 @)= 1_:5 ®) (13)
67 68 a69 ) 6 @) 1_:6 ®)
Pran ag  an | PAO| [F0)
ay  pPragy  ag 5 ?) Fs(®)
ay  ag  ptag) Do) LFy(p)]
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Or: The solution of the system of linear algebraic equa-
= tions (13) should be done by Cramet's rule.
[(E+8)7+KI50)=T(p) (139 N i
- J i Ji
Where: =2 ) (YRS (49
D) L )

Jp) and Fi(p)...Images of functions ¢g,(?) and F(?)
forj=4upto9;
p...Parameter of Laplace transform.

Where:
D(p)...Determinant of matrix of equations system
(13) and is equal to:

forn=19 Ca=1-s105 (15)

D@p)=C4 2 AZ(n.an(”'D
=0

Equations for calculation of the real coefficients Ay were derived in [7-10], in general, these equations are

valid for » = 2and 0 < 7 <n.
n n
_
Aoy=Cx {Z @;=$12a1 - 5214127512921 Z ‘Zz'z'}

Apy=1
=1 =3
w1l n n w1l n
A=) D [ ol 2l Sl e GDem ) D [ 4]
) ) |- S =512 .. N
2(}1 2) A ﬂjZ a 7 ﬂﬂ dZZ 21 412 ﬂZZ 12921 gﬂ ﬂj/
=1 j=it1 =3 =3 j=i+1

n2 -1 n a; dy‘ a; n-1 n an ay; 612/' n-1 n Ay Ay; ﬂlj
A2 3= C i d/z dj/ dj/ -512 aj aj; dy =51 ap aj; a;| -
" - - -

=1 j=it1 /=1 L% = = L G = =1 L% G
n-2  n-1 n a;; ﬂy‘ a; (16)
-512921 E [”/’i ajy “//1}
=3 j=it1 /=1 LU A
3 w2 nl n n-1 n
Az(ﬂ,z‘,):CA detAWﬁ/_z Z 2 [5‘12 defAZ] +51 del‘A12]—
=1 =it =1 k=M =3 =it =1
w3 2 nl
i=3 =it EH k=M1
Where:
4 Ay i ar,  dap;  dy A/ ap a4 4y A
@i o dy i an o a4y dy ap  d; dy o a4y
dé’l‘Awﬁ/: j_ j/ / 4 defA21= a: . @ a; [lé’fAle a 4 a4 a;
a Ay Ay A o @ 4y 4y ip  dy dy Ay
i i Gl Ak an a4y 4y ap a4y  dy 4aj

Ay=Clidet K

Calculation of coefficients Ay for 2 < i < nis
hard to solve. To calculate the values of these coeffi-
cients it is advisable to use one of the calculation pro-
grams, e.g. MAPLE or MATLAB.

Determinant Dj(p) in equation (14) is obtained sub-
stitution j~th column of determinant D(p) by vector
Fi(p) for i= 4 up to 9 from right side of equation (13).
The determinant D;(p) is the algebraic complement of
the determinant Dj(p) according to the ith element of
the j-th column of the vector F;(p).

By adjusting the division between determinants
Dj(p) and D(p) to determine demanded functions ¢(?)
using back transformation of the imagesj//.(p). The the-

orem about image convolution can be utilized when

the product of the image F,(p) and transformed ex-
pression is determined.

The function in equation (15) with real coefficients
(16) can be substituted by the product of quadratic bi-
nomials.

Z Ay V= ﬂ(psz) (172)
=0 =1

When the product on the right-hand side of (17a)
is solved, we get the polynomial:

z Az@,npz(”’l) = z Bz(;H)]?Z(M> (17b)
=y =0

Coefficients B,y can be solved as follows:
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n

By,=1 Bopy= Z of

=1
n2 -1 ”

By=, 2, D, oheied

=1 j=it1 =+
n

Bogny=Bo= 1_[ o

=1

A system of equations to asses wj, W), W, ... can be
assembled by coefficients comparison of polynomials
with the same exponents owing the parameter p?¢) lo-
cated at the both sides of the equations (17a, b) Az
= Bagry

Bug=), ) D, D, wheiuied (18)

=1 j=it1 jr1 k=Ir1

The simple equations are reached when equations
(18) is compared with the relations describing the cou-
pling of the coefficients of the algebraic equation and
its root factors.

j(a)z) :CUZ}Z—AZ(,;_D wz(”'l) +A2<,,,_2> CL)Z(”_Z) —A2<ﬂ_3> a)z(”'3) + (—1)”’1A2w2+ (—1)”A0:O (1 9)
Where: B
w2...Angular frequency of functions y(7), for j = 1, D) _ Z Lt 20)
2,3,...,1 D(p) k:lpzﬂdi

The most challenging aspect of the proposed pro-
cedure is calculating the eigenvalues of the frequency
equation (19) using an appropriate numerical method.
It is not only due to the need for numerical precision
but also because it involves solution of equations (13).
The right-hand part of equation (14) is defined by the
solution of (13).

Since the polynomial of the determinant D;(p) has
non-zero coefficients only at even exponents of the
parameter p in the solved case of undamped oscilla-
tion, and since the ratio of the determinants of (14) is
a purely rational fractional function, the ratio (14) can
be decomposed into a sum of partial fractions.

n

Lii 1

n n-1
+L;4 ﬂ(pz-i-a)i)-i- o+l l_l(pz-i-w?)]
=1 =1

stk

Where the indeterminate coefficient, the constant
L& belongs to 4-th of the partial fraction of the poly-
nomial (20).

To determine these indeterminate coefficients for
the /th element in the sum (20), the determinant Dj(p)
must be expressed as a polynomial.

D= ) Caua?? @)
s=1

The sum of the partial fractions on the right hand
side of equation (20) can be rewritten.

n ”
ol T 2ol |:sz',l 1_[(/52“0?) +tLo H@Zﬂuf) + .+
k=1 “k =1 (p wj) =2 s=1

§£2 (22)

The individual products on the right hand side is given by:

_ 2 2N 2 (-5
L= 1_[@ tof) =Ly Z Eiprap™"” 23)
=1 p=1

sEE

Ptk
Where the coefficients of the polynomial of the right-hand side of equation (23) are:

n-1 n

= 2 _ 2
Ek,2(”_1):] E/é,Z(nAZ) Z Wy Eé,z(”ﬁ)_ Z Wy
Pp=1 g=p+1
PEE gtk
n2  n-1 n n (24)
— 2, .2 2 — 2
E/é,2(ﬂ-4) - Z OJPOJqOJr E/é’zw_ﬂ) = 1_[ a)p
=1 g=p+t1r=q+1 =1
PR gtk 1tk L

Substituting (21) and (22) into equation (20), taking into account (24), we get:
n n n

s=1

Z Cjz‘,Z(ﬂ-J‘)pZM-I) = z Iyz,/e z Ek,Z(n-;)PZM_I) (25)
k=1 s=1
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And comparing the coefficients at the same expo-
nents of the parameter p in the polynomial of the nu-
merators of both fractions (20), a system of #-linear

2221 L/z’,éE/@Q(”'f) = 7,2 (1-5)

Where:

The index j = 1 + ... A part of the quantities J;

The index 7 = 4 + n...The excitation function
vector Fy(p) appropriate elements;

The index £ = 1 = #...The partial fraction.

The results of the decomposition of the ratio of
determinants (20) is partial fraction.

Equation (26) is expressed in matrix form

Eizpy  Ezpp Ero0m E,p0n] Lt Ciingn)

E 1,2(n-2) EZ,Z(n—Z) Ek,Z(ﬂ—Z) Eﬂ,Z(!FZ) L71,2 C/’i,Z(ﬂ—Z)

Eisuy  Eapp Etoms) E,nun | |Liz - Gty
Eip Esp e Eo o E,o L, C//,o

where the factors Egzus are given by (23).
After  determining the constants Lj;e and
substituting them into (20) and (14), we obtain
the relation for the calculation of the image j/j(p)

n n L
- _ = i, Ko
y,(p)—Z(—l)f Fz(p); P

After back-transformation we get the convolution
integral.

n ” ’

q0) = Z (-1)/”2%? f Fy(2)sin wy (1) dr 27)

= =1 0

Where:

we... The result of formula (19).

When the unknowns ¢,(#) are calculated as a results
of equations system (8), the variables in the system (0)
are assessed. Now it is simple to achieve the vertical
displacement at all points of chassis or frame.

4 Conclusion

The objective of the article was to create and verify
a method for the analytical solution of the assessment
of the influence of structural and operational asymme-
tries of various types at different kinematic excitation,
steady and transient, compared to the motion of a
symmetrically arranged vehicle system. On the basis of
the derived relationships, the permissible level of
asymmetry can be determined for a specific vehicle
while maintaining the driving safety and stability of the
vehicle. The presented calculation procedure, together
with the derived equations for the vehicle chassis, ena-
bles the calculation of the forces acting on the wheels
namely theirs intensity and time profile, assessing the
extent and permissibility of deformation in single
spring components and structural components, and
establishing damping rate to ensure physiological

algebraic equations for the calculation of the unknown
uncertain coefficients I is obtained.

fors=1,2,..,n (206)

comfort during the vehicle’s motion (when transpor-
ting passengers).

The use of the acquired knowledge will allow to
adjust the vehicle elements in such a way that in oper-
ation there is no loss of contact of the wheel with the
roadway and thus no critical situations.

The proposed solution enables the creation of an
algorithm for the calculation of vertical displacements
at arbitrary points of the model of rolling stock chassis
vehicles with a large range of variants of a particular
structural arrangement.
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