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The paper focuses on the application of machine learning techniques and optimization algorithms in 

predictions and controls of grinding temperature variations. The major thrust of investigation has been 

on how the different input conditions such as feed, depth of cut, and cooling conditions influence grind-

ing temperatures and the effectiveness of these conditions on the control of their thermal effects. Three 

machine learning models: Random Forest (RF), Gradient Boosting (GB), and Artificial Neural Networks 

(ANN) were then used to develop prediction models for the grinding temperature on both face and shoul-

der of the workpiece. Out of all the models, RF achieved a much higher R² score of 0.96 as compared to 

both GB and ANN, indicating its greater predictive performance. Furthermore, Bayesian optimization 

and genetic algorithms were employed in model optimization and grind parameters and cooling condi-

tion optimization to avoid damages caused due to temperature. MQL has been found to be highly supe-

rior to the inefficient dry cooling methods in terms of achieving lower grinding temperatures and, there-

fore, seems to be most suited as an eco-friendly yet practical cooling solution as based on this compari-

son. Altogether, these research findings indicate that AI-based techniques and traditional optimization 

methods can lead to much better grinding in terms of efficiency and energy consumption, as well as 

surface quality, and assist towards greener manufacturing altogether. 

Keywords: Cylindrical Grinding, Machine Learning, Random Forest, Gradient Boosting, Artificial Neural Net-
works, Temperature Prediction, Optimization Algorithms, Cooling Conditions 

 Introduction 

Grinding technology is extensively applied in ma-

nufacturing industries, e.g., composites, aerospace all-

oys, and wind turbine blades, and its machining ac-

curacy directly affects the working performance and 

surface integrity of workpieces [1]. While grinding 

processes produce surface thermomechanical da-

mages in hard components owed to high frictional 

heat, these damages lead to the formation of tensile 

residual stresses, lowered hardness, rehardening, and 

micro-cracking, which demand the development of a 

reliable damage detection method [2]. Grinding, one 

of the most important processes for obtaining good 

quality surfaces of steel, is influenced by the geometri-

cal changes and changes in material properties under-

neath the surface, which interfere with the functiona-

lity and reliability of a component [3]. The high tem-

peratures and mechanical stresses associated with 

grinding induce thermal expansion, phase transforma-

tion, and plastic deformation in the more thin-walled 

workpieces, resulting in residual stresses and distor-

tion [4]. While FE simulation is an attractive method 

for predicting distortion at a low cost, it does require 

a long time for the modeling and solving of complex 

nonlinear equations, which dictate thermal and me-

chanical effects [5]. High-end real-time measuring 

technologies along with Artificial Intelligence (AI) are 

going to reform the whole manufacturing process as 

they technically permit efficient collection, storage, 

and data analysis for process optimization. Machine 

Learning (ML), a specific and important aspect of AI, 

is extremely competent in analyses of huge, complex 

databases, improving the accuracies of predictions, 

and offering a new lease of life to the old and well-

established processes in manufacturing at advanced le-

vels [6]. 
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Recent research revealed that there are still many 

open questions regarding the dynamics of energy par-

tition in belt grinding and the thermal and mechanical 

behaviours of the grinding process. This topic is being 

addressed through coupling single grain scratch tes-

ting with a finite element analysis method to calculate 

energy distribution, yet more general models are still 

awaited. For instance, an effective model was propo-

sed, which calculates the dynamic energy partition in 

robotic belt grinding, and verification tests have 

shown that an error of 17.2% concerning specific 

workpieces, such as SUS304 and AA6061-T6, is atta-

inable [7]. The same improvements have been made 

to thermal modeling in cup wheel grinding by incor-

porating the geometry of wheelwork contact at which 

heat distribution occurs during grinding. The resultant 

improved model has great significance, giving errors 

in grinding temperature predictions below 6.6% [8]. In 

rail grinding, the thermal model was proposed to pre-

dict the grinding temperature and analyze the forma-

tion of white etching layers (WEL) that establish at 

about 400°C, but a robust model for WEL formation 

prediction, as well as the effects of thermal and me-

chanical stresses, is still required [9]. 

With all the thermal-induced effects of laser irradi-

ation being integrated into the laser-assisted grinding 

process, much work is still left to prediction models 

for surface roughness and topography in LAG of zir-

conia ceramics. Theoretical and experimental works 

have shown good congruence with the surface rou-

ghness values, though further refinement of the model 

for temperature-dependent material properties is still 

needed [10]. In ultra-precision grinding, better un-

derstanding has been gained about the influences of 

both cutting speed and depth-of-cut on damage at the 

surface and below it; the cuts show improved results, 

such as reduced surface roughness and subsurface da-

mage, as cutting speed increases [11]. In the manu-

facturing industries, like for instance the solid wood 

panel and concrete industries, the AIOGA opti-

mization techniques are proven to be good at impro-

ving scheduling, thereby minimizing operational time 

[12]. Hybrid algorithms such as GEP-PSO have also 

yielded very promising developments in machining 

processing. They include reducing energy usage and 

tool wear while upholding surface quality in machining 

superalloys [13]. In addition, machine learning appro-

aches like GA-BP neural networks helped make im-

provements in pressure monitoring for drilling appli-

cations, which will provide other pressure monitoring 

types of reference for future uses [14]. 

Applications of GMDH ANN, in conjunction 

with evolutionary algorithms NSGA-II, MOPSO, and 

MOGWO, to predict the rheological behavior of CuO 

NPs, have largely succeeded. However, the Genetic 

Algorithm (GA) was declared to be best performing 

among all studied techniques [15]. Also, Inconel 690, 

given its heat resistance, is known for being difficult 

for machining, which, therefore, makes it even more 

important for tuning of conduct on lubrication strate-

gies and optimization algorithms. NSGA-II, however, 

particularly proved to be successful, at a success rate 

of 82.3% against 79.1% by TLBO; hence faster and 

more efficient for machining optimization application 

[16]. Finally, the hybrid optimization approaches that 

combine Bayesian optimization and NGBoost have 

proved useful for optimizing the concrete production 

mix design. These advances reduce costs and carbon 

emissions tremendously [17]. According to the fuzzy-

AHP-MOORA method applied to AISI 304 stainless 

steel, with trials 12, 14, and 8 occupying the 1st, 2nd, 

and 3rd positions based on differences of 0.2133, 

0.2076, and 0.1083, respectively, bushing length un-

dergoes the most prominent improvement [18], im-

plying the need to select the parameters carefully for 

the purpose of quality control in thermal friction 

drilling. For grinding AISI 1060 high-speed steel, the 

combined effects of compressed air, MQL, and nanof-

luids are being investigated, with the best working 

mode found to be MQL combined with compressed 

air, where higher cutting speeds improved the surface 

roughness, but the cutting temperature was a trade-off 

[19]. In the meantime, the grinding process of 

W18CR4V steel was optimized using machine-lear-

ning models such as DNN-GA while also attaining 

about 81.5% and 77.7% reduction in Ra and Rz, re-

spectively, wherein DNN-GA obtained an R² > 0.99 

and better optimization results via MOGWO [20]. Fi-

nally, Inconel 718's micromilling under MQL lubrica-

tion brought forth the clear effect of cutting parame-

ters wherein depth of cut and feed per tooth had the 

highest effect with the optimal parameters ap = 0.010 

mm and fz = 0.008 mm/tooth with surface roughness 

of 0.24 μm and channel depth deviation of 0.41 μm 

[21]. These advances further give hope that a combi-

nation of multiple optimization algorithms could solve 

the varied problems of manufacturing in many in-

dustries. Table 1 presents an inclusive summary of di-

fferent studies with descriptions of materials, model, 

optimization algorithm, important findings, and re-

sults. The studies pertain to grinding processes, ma-

chining optimizations, and predictive modeling, 

highlighting the applications of advanced algorithms 

such as FEM, NSGA-II, and GA-BP. The results 

show that all such methods have been highly success-

ful in optimizing energy efficiency, surface quality, and 

costs in respective raw materials and processes. 



September 2025, Vol. 25, No. 4 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489 

e-ISSN 2787–9402 

 

434 indexed on http://www.webofscience.com and http://www.scopus.com  

Tab. 1 Summary of Materials, Models, Optimization Algorithms, Key Findings, and Results from Relevant Studies 

Ref. 
No. 

Material 
Used 

Model Used 
Optimization 

Algorithm 
Key Findings Results 

[7] 
SUS304, 

AA6061-T6 
Dynamic energy 
partition model 

FEM, Iterative 
approach 

The model for dynamic energy parti-
tion considers grinding effects and 
thermal aspects, calculating energy 
partition in continuous grinding. 

The method showed a maximum 
error of 17.2% for energy parti-

tion, enhancing understanding of 
robotic belt grinding. 

[8] 
Cup wheel 
grinding 

3D analytical 
thermal model 

FEM 
The model integrates wheelwork con-
tact geometry to predict grinding tem-

perature distribution. 

The model demonstrated <6.6% 
error for maximum temperature 
and <8.5% error for temperature 

location. 

[9] Rail material 
Analytical thermal 

model 

Non-uniform 
heat source dis-

tribution 

Predicts grinding temperature and ana-
lyzes the effect of surface burn and 

white etching layer (WEL). 

The WEL forms at grinding tem-
peratures around 400°C, with re-
tained austenite and martensite 

observed on the surface. 

[10] 
Zirconia ce-

ramics 
Grinding wheel 

model 

Stochastic pro-
cess, thermal 

modeling 

Developed a predictive model for sur-
face topography in Laser-Assisted 
Grinding (LAG), considering laser 

power and material removal. 

Experimental results closely 
matched simulations with errors in 

surface roughness (Rz and Ra) 
<8%. 

[11] 
Fine-

grained 
grinding 

Grinding process 
simulation 

Experimental, 
interferometry 

analysis 

Investigated surface roughness and 
subsurface damage under different 

depth-of-cut and cutting speed. 

Found linear relationship between 
surface roughness (Ra) and SSD 

depth with significant reduction in 
SSD with increased cutting speed. 

[12] 
Solid wood 

panel 
Simulation system 

for production 

AIOGA (Adap-
tive Intelligent 
Optimization 

GA) 

AIOGA improved scheduling for 
solid wood panel production by opti-
mizing completion times and work-

load balance. 

AIOGA reduced maximum com-
pletion time by 39.60%, enhancing 

operational efficiency. 

[13] Inconel 690 
Gene Expression 

Programming 
(GEP) 

Particle Swarm 
Optimization 

(PSO) 

GEP-PSO optimization reduced en-
ergy consumption, carbon emissions, 
cost, surface roughness, and tool wear 

during Inconel 690 machining. 

Achieved a 20% energy reduction, 
18.68% reduction in carbon emis-
sions, 20.21% reduction in surface 
roughness, and 31.71% reduction 

in tool wear. 

[14] 
Well area X 
(Yinggehai 

Basin) 

BP and GA-BP 
Neural Networks 

Genetic Algo-
rithm (GA) 

GA-BP model outperformed BP in 
monitoring formation pressure during 

drilling, improving accuracy. 

GA-BP achieved 92.89% accuracy 
in formation pressure monitoring, 

surpassing BP's 91.25%. 

[15] 
Nanofluids 
with CuO 

NPs 
GMDH ANN 

NSGA II, 
MOPSO, 
MOGWO 

GMDH ANN combined with 
MOGWO provided the best perfor-

mance in predicting viscosity of 
nanofluids. 

Achieved optimal viscosity (μ) 
prediction at 0.96686 cP with opti-

mized input parameters. 

[16] Inconel 690 
Taguchi L27 or-
thogonal array 

NSGA-II, 
TLBO 

NSGA-II outperformed TLBO in ma-
chining optimization for Inconel 690, 

achieving a higher success rate and 
faster computation. 

NSGA-II achieved 82.3% success 
rate, with faster computation (8.3 
seconds) compared to TLBO (5.6 

seconds). 

[17] 
Segment 
concrete 

NGBoost, 
NSGA-III 

Bayesian Opti-
mization, 
NGBoost, 
NSGA-III 

Hybrid optimization reduced segment 
concrete production costs and carbon 
emissions, improving mix proportions. 

Optimal mix reduced costs by 
31.64 yuan and carbon emissions 
by 31.04 kg per cubic meter, with 
an 11.5% improvement over ex-

perimental optimization. 

[18] 
AISI 304 
stainless 

steel 

Fuzzy-AHP-
MOORA method 

Analytic Hierar-
chy Process 

(AHP), Fuzzy 
framework 

The best parameters were selected for 
thermal friction drilling using fuzzy-

AHP-MOORA. 

Experimental trials 12, 14, and 8 
were found to achieve the best 

positions, with improved response 
for bushing length. 

[19] 
AISI 1060 
high-speed 

steel 

Horizontal Spin-
dle Surface 

Grinder 

Entropy-based 
TOPSIS, 
VIKOR 

MQL with compressed air and nano-
particles showed the best perfor-

mance, with improved surface finish. 

At higher cutting speeds, better 
surface finish was achieved, with 

varying cutting temperature. 

[20] 
W18CR4V 

steel 

Deep Neural Net-
works (DNN), K-

Nearest Neigh-
bors (KNN), De-

cision Trees 
(DT), Support 

Vector Machines 
(SVM) 

Genetic Algo-
rithm (GA), 

Multi-Objective 
Grey Wolf Op-

timization 
(MOGWO) 

DNN-GA model achieved significant 
reduction in surface roughness and 

production time. 

Ra reduced to 0.341 μm, Rz to 2.3 
μm, and production times were 

optimized between 1181 to 1426 
s. 

[21] 
Inconel 718 
superalloy 

Micromilling pro-
cess 

Taguchi 
method, 
TOPSIS 

Depth of cut and feed per tooth sig-
nificantly influence cutting force and 

surface roughness. 

Optimal cutting parameters re-
sulted in a channel depth devia-
tion of 0.41 μm, burr formation 

height of 6 μm, and surface 
roughness of 0.24 μm. 
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There has been a limited number of studies inves-

tigating dynamic energy partitioning in belt grinding 

with specific emphasis on integrating thermal and 

grinding effects. Most of the thermal models that have 

been developed for cup wheel grinding ignore the 

effect of geometry of contact between wheel and 

workpieces. Thus, heat transfer assumptions have 

been overly simplified. The same situation is given 

when concerning rail grinding, in that, there are few 

studies that can accurately predict the formation of the 

white etching layers (WEL) and study their combined 

effects with thermal and mechanical stresses. Howe-

ver, there is room for improvement in modelling sur-

face roughness while laser assisted grinding (LAG) 

and ultra-precision grinding. Further investigation is 

needed on hybrid optimization techniques so that they 

reduce inefficiencies, optimize material use, and mi-

nimize carbon emissions, especially for scheduling in 

some industries like solid wood panel production and 

concrete manufacturing. This study, therefore, aims at 

addressing such gaps; they include predicting tempe-

rature variations during grinding, AI-based opti-

mization to minimize temperature rise, and compara-

tive studies on cooling conditions, Dry and Minimum 

Quantity Lubrication (MQL). In addition, the research 

shall entail the integration of machine learning models 

such as Random Forest (RF), Gradient Boosting 

(GB), and Artificial Neural Networks (ANN), which 

will further enhance prediction accuracy and opti-

mization of the grinding process. These machine lear-

ning models will offer a basis of understanding how 

cooling methods influence thermal stresses and sur-

face quality, all of which ultimately bring about susta-

inable and efficient manufacturing processes. This 

study will fill existing gaps in dynamic energy partitio-

ning and cooling optimization in advanced grinding 

processes such as LAG and ultra-precision grinding. 

 Materials and Experimental Setup 

 Workpiece Material and Specifications 

The material used for the workpieces for cylindri-

cal grinding experiments was EN31 steel, which is 

knowing for its hardness at 50 HRC and for having 

wear resistance. Its chemical composition included 

Carbon (1%), Chromium (1.40%), Manganese 

(0.50%), and others as alloying elements. Specimens 

were prepared by facing, turning, and step turning, 

followed by deep oil hardening. Holes were made by 

Electrical Discharge Machining (EDM) for embed-

ding thermocouples to measure the temperature. A 

specially designed test rig with slip rings was made to 

take care of proper temperature sensing and rotation 

during grinding. 

 Grinding Conditions and Process Parameters 

2.2.1 Control Parameters 
The four major parameters of the machining pro-

cess determined to be in focus for this study were sub-

sequently investigated to understand their effect on 

cylindrical grinding performance. The selected para-

meters varied from 0.025 mm to 0.04 mm for the 

depth of cut and were directly proportional to the 

amount of material removed per pass; the rate of feed 

that was taken into account, especially concerning the 

material removal rate and surface finish; the work 

speed, whose variations were 100-250 rpm, and it was 

said to be in favour of keeping the right balance of 

heat generation and wear rate of the grinding wheel; 

similarly, the wheel speed was maintained between 

948 rpm and 1186 rpm and exerted a great influence 

on the size of abrasive chips and the subsequent ther-

mal effect on the workpiece. In an ordered approach, 

the investigation established a systematic method of 

analysis of these parameters through the Taguchi L29 

orthogonal array as the experimental design for an 

effective investigation of combinations of parameters 

by conducting 29 designed experiments. The opti-

mization approach was based on the Smaller-the-bet-

ter quality objective, aiming toward minimizing the 

critical output responses like temperature and surface 

roughness to render the grinding process much more 

upgraded in terms of its quality and integrity. 

 
2.2.2 Cooling Methods 

The investigation involved grinding experiments 

performed under three different cooling conditions to 

analyse the effect of thermal performance and surface 

integrity. The first cooling condition was dry grinding 

with no cooling, which poses a great risk of thermal 

damage due to excessive heat generation during grin-

ding. Second condition is more developed method of 

cooling is Minimum Quantity Lubrication (MQL), 

where the amount of fluid used is reduced significantly 

by applying only a highly controlled mist of lubricant 

in the grinding zone. Two types of MQL fluids were 

used: HP KOOLKUT 40-an ordinary emulsifiable oil 

that forms a milky white emulsion and HP 

SYNTHCOOL 100-a semi-synthetic cutting fluid low 

in concentration but possesses great thermal proper-

ties and it is fluorescent yellow in colour. Both MQL 

types show excellent heat dissipation, surface finish 

improvement, and significant resistance to bacterial 

contamination, making them feasible alternatives for 

environmentally friendly and high-performing grin-

ding operations. 
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Tab. 2 Physio-chemical properties of HP KOOLKUT 40 

Properties HP KOOLCUT 40 

Colour After Emulsification Milky White 

Kinematic Viscosity at 40 °C, Min, CST 20 

Flash Point, COC °C, Min 150 

Copper Corrosion at100 °C, Min 1 

Cast Iron Corrosion Test, 20:1 Emulsion with 400 PPM Hard Water Max 0/1-1 

Tab. 3 Physio-chemical properties of HP SYNTHCOOL 100 

Properties HP SYNTHCOOL 100 

Appearance Florescent yellow 

Copper Strip Corrosion 3Hr 1 at 100°C, Max 1 

1 :40 in Distilled Water 0/1-1 

1 :40 in Hard Water-200 PPM 0/1-1 

 
Tables 2 and 3 show the physio-chemical proper-

ties of two cooling fluids: HP KOOLKUT 40 and HP 

SYNTHCOOL 100. HP KOOLKUT 40 is milky 

white after emulsification, and at 40°C, it manifests a 

kinematic viscosity of 20 CST, with a flash point of 

150°C, while in the corrosion test, it was rated 1 for 

copper corrosion and 0/1-1 for cast iron corrosion at 

20:1 emulsion with 400 PPM hard water. In the case 

of HP SYNTHCOOL 100, it is fluorescent yellow in 

appearance, giving a copper strip corrosion rating of 1 

after 3 hours at 100°C. Corrosion tests at 1:40 in dis-

tilled and hard-water (200 PPM) gave 0/1-1, thus con-

firming its stable behavior under various conditions. 

 Experimental Setup and Measurement Tech-
niques 

Works on the AHG-60X300 CNC Grinding Ma-

chine, conceived and produced by Parishudh Ma-

chines Pvt. Ltd., are on samples that can ac-

commodate workpieces with grinding widths of up to 

60 mm and center distances of 300 mm. A custom test 

rig was developed to ensure accurate thermal analysis 

during grinding and was made up with embedded 

thermocouples, slip rings for power transfer, and a 10-

channel data logger. This system allowed multi-point 

temperature monitoring of the rotating workpiece un-

der various cooling conditions so that accurate and 

consistent data could be gathered during the grinding 

operation.  

The experimental set-up, which is a sort of instal-

lation for temperature measurement during external 

cylindrical face, and shoulder grinding operations, is 

depicted in Fig. l. Viewing various components of the 

CNC grinding machine superimposed by the temper-

ature-measuring instruments, such as thermocouples 

and a data logger, it is evident that temperatures are 

measured in real time as the grinding proceeds.  

Table 4 delineates the design specifications of the 

CNC face and shoulder grinding machine of type 

AHG-60X300. The main specifications include the 

maximum workpiece width of 60mm, maximum 

distance between centers of 300mm, external whee-

lhead with grinding wheel of size 500mm x 254mm. 

The machine is operated by a power source of 7.5 kW 

AC induction motor with a rapid feed of 10m/min, 

requiring an overall power of 25 kW and weighing 

4000 kg making it suitable for precision grinding. 

 

Fig. 1 Experimental Setup for Measuring Temperature in 
External Cylindrical Face and Shoulder Grinding Operation
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Tab. 4 Specifications of Face and Shoulder grinding machine used 

Item Specification 

Machine Type 

AHG- 60X300 CNC 

Maximum width of the work piece to be grind=60mm, 

Maximum Distance between centers = 300mm. 

Manufactures Name Parishudh Machines Pvt. Ltd. 

Capacities 
Centre Height: 130mm 

Distance between centers: 300mm 

External Wheel Head 
Grinding Wheel (OD x ID) = ϕ500mm X ϕ 254mm 

Maximum Width: 60mm 

Work Head (Dead) 

Spindle Motor (AC induction Motor): 7.5 Kw 

Grinding Speed: 45m/s 

Spindle Speed (infinitely variable):50 – 650 rpm 

Spindle motor (AC Servo Motor): 6NM 

Infeed Slide (X-Axis) 

Total Stroke: 200mm 

Rapid Feed rate: 10m/min 

Feed A. C. Servo Motor: 6NM 

Input Resolution: 0.0001mm 

Table (Z-Axis) 

Total Stroke: 400mm 

Rapid feed rate: 10m/min 

Feed A. C. Servo motor: 6NM 

Input Resolution: 0.001mm 

Tail Stock Assembly 
Travel: 40mm 

Centre: MT 4 

General 

Coolant Pump Motor: 1.5KW 

Total power requirement: 25Kw 

Total Weight of the machine: 4000kg 

 Methodology 

The dataset used for prediction of temperature in 
cylindrical grinding operations included input features 
like Depth of Cut, Feed Rate, Work Speed, Wheel 
Speed, and Cooling Condition. Since cooling condi-
tion was a categorical variable with three classes, 
namely Dry, MQL with HP KOOLKUT 40, and 
MQL with HP SYNTHCOOL 100, OneHotEncoder 
encoding was performed to render it interpretable by 
machine-learning models. To maintain uniformity 
during the training process and avoid any single fea-
ture dominating on account of differences in scale, all 
input variables were normalized using Standard-
Scaler(), thereby converting them into a standard 

Gaussian distribution. After preprocessing and re-
moval of incomplete records, the final dataset con-
sisted of 86 samples. The data were then split into 
training and testing sets using an 80:20 ratio, resulting 
in 68 samples in the training set and 18 samples in the 
testing set. Stratified sampling was applied to preserve 
the distribution of the three cooling condition classes 
across both subsets, thereby minimizing potential 
class imbalance and ensuring effective generalization. 

 Machine Learning Models for Temperature 
Prediction 

3.2.1 Random Forest Regressor (RF)  
Random Forest Regressor (RF) is an ensemble-

based machine-learning model that came into use in  
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this study because of its ability to improve the pre-
diction accuracy through the ensemble technique of 
combining multiple decision trees [22-24]. Particularly 
suited for non-linear relationships on complex data 
sets like those arising in machining operations, RF 
averts overfitting by prediction averaging of many de-
cision trees and increases generalization in creating a 
prediction. The performance of the model was fine-
tuned by changing its key hyperparameters: the num-
ber of decision trees (n_estimators) varied between 50 
and 200, max depths of each tree (max_depth) from 5 
to 50, and the minimum number of samples required 
to split an internal node (min_samples_split) ranged 
from 2 to 10. With optimized hyperparameters, the RF 
model went on to predict grinding temperatures with 
significant accuracy under different conditions set for 
the process. 

RF: 𝑦̂ =  
1

𝑁
 ∑ 𝑇𝑖 (𝑥)𝑁

𝑖=1  (1) 

 
3.2.2 Gradient Boosting Regressor (GB)  

Gradient Boosting Regressor (GB) was selected 

for its promise in minimizing bias and variance from 
a perspective of sequential learning, where trees are 
built one after the other [22-24]. The GB method 
sequentially constructs trees in a way that each new 

tree is trained to correct the residual errors of the 
aggregate ensemble of previous trees-a property that 
allows further adjustments in GB for model accuracy 
incrementally, rewarding the method against complex 
regression challenges like temperature prediction in 
grinding operations. The engine was modeled through 

tuning processes in which the n_estimators were va-
ried from 100 to 300, learning_rate from 0.005 to 0.2, 

max_depth from 4 to 50, subsample from 0.6 to 1.0, 

and min_samples_split from 2 to 10. These settings 
provided a balance between training capacity and 
avoiding overfitting. 

GB: 𝑦̂𝑚 = 𝑦̂𝑚−1 +  𝜂 ∙  𝑓𝑚(𝑥) (2) 

 
3.2.3 Artificial Neural Networks (ANN)  

Artificial Neural Networks (ANNs) were to model 
complex non-linear interactions among input features 
through the Multi-Layer Perceptron Regressor 
(MLPRegressor) [22-24]. The ANN design closely 
tracked the intricate patterns of the dataset; the tree-
based ones would never unlock. The network archi-
tecture consisted of three hidden layers with several 
neurons in each layer being 200, 200, and 100, re-
spectively, ensuring deep learning turns. The introdu-
ction of non-linearities was performed by the tanh 
activation function, whereas weight optimization was 
done with lbfgs solver. In addition to that, the learning 
rate was adaptively modified to suit different gradient 
behaviours during training, up to 10,000 iterations 
being taken to ensure proper convergence of the mo-

del. This setting allowed the ANN to perform remar-
kably well in prediction scenarios where slight or even 
complex interactions among features are involved. 

ANN: 𝑦(𝑙) = 𝑓(𝑊(𝑙) ∙  𝑦(𝑙−1) + 𝑏𝑙) (3) 

 Hyperparameter Optimization using Baye-
sian Search 

Hyper-parameter tuning of all three machine lear-
ning models was performed with Bayesian Opti-
mization, leveraging the probabilistic approach to op-
timize the search space effectively and decrease the 
prediction error. The performance of the models was 
evaluated during this process by three important me-
trics: the squared difference between the predicted va-
lue and true value, averaged over all observations 
(Mean Squared Error, MSE); the proportion of vari-
ance in the target variable accounted for by the model 
(R² Score); and the average magnitude of the error in 
the predictions (Mean Absolute Error; MAE). Con-
vergence was decided when either validation loss pla-
teaued or the validation accuracies crossed the defined 
thresholds over 20 consecutive iterations, ensuring 
best model performance with no overfitting. 

 Genetic Algorithm for Process Optimization 

The grinding process was optimized by a genetic 
algorithm. The aim of the genetic algorithm is to yield 
the minimum grinding temperature through the most 
favourable combination of process parameters and 
cooling methods. The developed fitness function was 
based on the temperature prediction by the trained 
model.  

The Genetic algorithm (GA) with a population size 
of 20 individuals per generation was employed to dis-
cover the optimal machining parameters and cooling 
condition, incorporating tournament selection in the 
design to maintain robustness, ensuring survival for 
high-quality solutions.  Blend Crossover (CX) and 
Gaussian mutation operators were used in selecting 
the appropriate genetic operators to increase genetic 
diversity and diminish convergence to local minima. 
The GA, very iteratively running through many gene-
rations of evolution work, developed the best confi-
guration to minimize grinding temperature. 

This flowchart in Fig. 2 explains the entire process 
of predicting and optimizing the grinding process. It 
begins with the preprocessing of data, i.e., encoding 
and scaling of input features, and the splitting of data 
into training and testing datasets. Case modeling and 
training employ methods such as Random Forest, 
Gradient Boosting, and Artificial Neural Networks to 
predict grinding temperatures. Hyperparameter tuning 
and genetic algorithms are implemented in the final 
step to optimize other process parameters such as 
cooling conditions for greater efficiency and accuracy 
in the grinding process. 
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Fig. 2 Flowchart of research methodology of RGA_NN model 

 Results and Discussion 

This section of the paper discusses the experimen-
tal results obtained using machine-learning models 
employed for temperature prediction in cylindrical 
grinding operations. Various evaluation metrics-corre-
lation analysis, residual analysis, confusion matrices, 
and performance comparison of the models-are 
discussed in detail. 

 Correlation Analysis 

Constructing a correlation matrix helps to study 
the inter-relationships among input features (depth of 
cut, feed rate, work speed, wheel speed, and cooling 
conditions) and output variables (temperature at the 
face and shoulder). As shown in Fig. 3, the heatmap 
employs a color scale that varies within a continuous  
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range of hues as they traverse from strong red to 
strong blue color, with lighter, less intense colors used 
to mark positive and negative correlations. The he-
atmap shows that temperature at the face and shoulder 
is strongly positively correlated (0.81-0.84) with coo-
ling conditions, especially with the MQL using HP 

SYNTHCOOL 100, being most effective for tempe-
rature reduction as compared to other cooling tech-
niques. To yield a clearer understanding of the given 
data, an elaborate explanation concerning the color 
scale and interpretation with respect to accuracy of 
model prediction is needed. 

 

Fig. 3 Feature Correlation Heatmap 
 
There was a strong correlation between the face 

and shoulder workpiece temperatures, with coeffi-
cients in the range of ~0.81 to 0.84, which signifies 
that if one temperature increases, the other typically 
follows. Of all variables, the cooling condition was the 
most dominant. Minimum Quantity Lubrication 
(MQL) with HP SYNTHCOOL 100 resulted in a sub-
stantially lower temperature compared with either dry 
or any other cooling conditions. Feed Rate and Work 
Speed were shown to moderately influence tempera-
ture change, which represented a key quantity for ther-
mal control during the grinding operation. 

 Relationship Analysis in Pairs 

This plot was created which visualizes the distri-
bution and interaction between input features and the 
target variable.  

Fig. 4 shows the effect of feed rate on temperature 
at the face and shoulder during grinding. The graph 
depicts a more or less steady rise of temperature at the 
face with increasing feed rate, while the shoulder tem-
peratures vary almost independently from the feed 

rate, suggesting that the face temperature is much 
affected by the feed rate. The shaded regions represent 
the margin of error or difference in temperature data 
at every feed rate, presenting an idea of the extent of 
temperature variation in the measurements. An elabo-
rated explanation of this variability would better illu-
minate the feed rate-temperature relationship, thereby 
giving greater and enhanced insight into the mecha-
nism of the grinding process.  

Fig. 5 depicts the variations in temperature at the 
face and shoulder as influenced by the depth of cut. 
Aprove heighting temperatures at both locations dec-
line with an increase in the depth of cut; the variation 
in temperature is higher in the face than the shoulder. 
This indicates that the cooling effect of the depth of 
cut is more profound on the face of the workpiece. 
The shaded regions depict the variation in tempera-
ture data for different depths of cut. This further goes 
to show how deeper cuts are able to cool the face bet-
ter and should be studied further to stress the practical 
importance of utilizing cutting depth during machi-
ning operations for better thermal management. 
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Fig. 4 Effect of Feed Rate (FR) on Temperature 

 

Fig. 5 Effect of Depth of Cut (DOC) on Temperature

 

Fig. 6 Pair Plot of features and Target Variable 
 
Fig. 6 shows the pair plot showing the relationships 

between features (Depth of Cut, Feed Rate, Work 
Speed, and Wheel Speed) with the target variable tem-
perature at face. The pair plots comprise scatter plots 
between one feature and another with distribution dis-
tribution histograms on the diagonal. These scatter 
plots show that there are trends between temperature 

at the face and features like Feed Rate and Work Speed 
while the histograms show the feature-wise distri-
bution within the dataset. The trends in these scatter 
plots must be explained deeply, especially about how 
feed rate and wheel speed relate to face temperature, 
as it would give deep insight into the mechanistics of 
the grinding process. 
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It was found that the distributions of parameters 
could be analysed with respect to their depth of cut 
and feed rate, which play different roles in tempera-
ture development during grinding. The localized heat 
generation would be due to changes in depth during 
cutting, while the feed rate would account for the total 
thermal load for a certain amount of time. Great work 
speed and wheel speed, in some of the experimental 
cases, lowered the temperature. This may indicate that 
these factors could enhance the heat dissipation pro-
cess and improve the overall thermal behavior during 
grinding. These findings adequately emphasize the 
precision of balance of input parameters to afford heat 
production management.  

 Residual Analysis 

Different models are evaluated by analysing 
upright residual plots. The box plot of residuals for 
RF, Gradient Boosting, and ANN is in Fig. 7; the plot 
gives us a glance on the error ranges of the different 
methods: From this plot, we observe that Random Fo-
rest and Gradient Boosting models observe lesser out-
liers with the ANN model having an open-ended 
spread of residuals, implying a high variance in its pre-
dictions. With respect to residuals, a more balanced 
residual distribution is shown by the Random Forest 
model, hence making it more reliable. An explanation 
of the importance of these residuals and how they 
affect the prediction accuracies of the models would 
help in defining further aspects of model perfor-
mance.  

The diverse nature of the residual analysis stands 
out in contrasting the performances of different ma-
chine learning models. The Random Forest model 
exhibited reasonably balanced residuals with lower va-
riance, showing that its predicted results can be trusted 

across the dataset. The Gradient Boosting model, on 
the other hand, displayed a slightly wider scatter of the 
residuals, suggesting minor inconsistencies in predicti-
ons that could be arising due to complex interdepen-
dencies in the data. The Artificial Neural Network 
(ANN), meanwhile, exhibited the highest residual va-
riance, indicating that the model might require additi-
onal tuning for greater stability and generalized per-
formance. Such deductions suggest that Random Fo-
rest is equally reinforced as the strongest model in this 
research. 

 

Fig. 7 Box plot of residuals for each model 

 Residual Distribution Across Models 

Fig. 8 shows residual histograms for the RFs, GBs, 
and ANN models for error and prediction trend ana-
lysis. The histograms reveal that the Random Forest 
model residuals were tightly distributed about zero 
and, hence, well-predicted; whereas the ANN residu-
als were scattered, indicating that more optimization is 
required. Gradient Boosting also showed more varia-
tion in errors when compared to the Random Forest 
model. Understanding these residual trends and the 
consequences for model performance will better in-
form model utility and areas for further improving the 
model. 

 

Fig. 8 Residuals distribution for each model 
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Refitting of the residual distribution indicated sub-
stantial variation among the models under considera-
tion. The Random Forest model presented a concen-
trated distribution of residuals about the zero line; 
hence, making predictions that were largely correct 
with little bias from the mean. In contrast, the Gradi-
ent Boosting model presented a slight skewness in its 
residuals, which implied some level of over-predicti-
ons displayed by the model especially in the higher 
temperature range. On the contrary, scattered residu-
als of ANN suggested wide variability in prediction, 
warranting further optimization improvements for ac-
curacy and consistency. These findings indicate that 
while Random Forest almost perfectly captured the 
phenomenon being modelled, some further tuning 
and refinement apply to Gradient Boosting and ANN. 

 Model Comparison Metrics 

The analysis of the performance of the models 
affirmed that Random Forest had the best perfor-
mance, having the least Mean Squared Error (MSE) 
and the highest R² score, with a direct implication that 
it had a better ability in predicting deviation of  
temperature with accuracy and least error. Gradient 

Boosting had a rather good performance overall, but 
because it exhibited a slightly higher error margin than 
Random Forest, which leaves it up for further opti-
mization. Once properly optimized, ANN showed 
competitive performance, however, with higher resi-
dual variance, suggesting that there is still scope for 
improvement in terms of consistency in predictions 
even after optimization. For the models to be asses-
sed, being on slightly more of the efficiency aspect, 
MSE and R² scores were in comparison, with Random 
Forest emerging as the most reliable among all; Gra-
dient Boosting and ANN holding promise yet should 
be tuned in further for better performance. Table 5 
provides a comparison of the Mean Squared Error 
(MSE) and R² scores for the three machine learning 
models: RF, GB, and ANN. RF has the lowest error 
and the highest goodness of fit, making it the best-su-
ited model for the temperature prediction task. An ap-
propriate explanation about the statistical significance 
of the results, especially regarding how MSE and R² 
are calculated and what they mean for model vali-
dation, would have undoubtedly improved the value 
of this table.

Tab. 5 Performance of the models 

Model MSE (Lower is better) R² Score (Higher is better) 

Random Forest 1.3307 0.9631 

Gradient Boosting 1.4669 0.9593 

Artificial Neural Network 1.5302 0.9576 

 

Fig. 9 R2 score comparison of Temperature at face and shoul-
der for RF and ANN 

 
Fig. 9 to 11 present a comparison of the three ma-

chine learning models Random Forest (RF), Gradient 
Boosting (GB), and Artificial Neural Network (ANN) 
to model grinding temperature at face and shoulder. 
Fig. 9 shows that RF performs better than ANN in 
modeling face temperature, with ANN doing better 
for the shoulder temperature. Fig. 10 presents the 
MSE values that point to slightly lesser errors of the 
ANN in shoulder temperature predictions, hinting 
that ANN can grasp some patterns better than RF, 

even if RF stays better overall. Fig. 11 shows MSE and 
R² scores for all three models. It is so evident that RF 
and ANN behave equally well in MSE and R², while 
GB suffers from high MSE and low R² scores, basi-
cally meaning that RF is the most dependable model 
for both temperature predictions. It would be worth 
more discussing the practical value of these differen-
ces in model performance from the potential applica-
tion viewpoint of the grinding process and lowering 
errors. 

 

Fig. 10 MSE values comparison of temperature at face and 
shoulder for RF and ANN 
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Fig. 11 MSE values comparison of temperature at face and 
shoulder for RF, GB, ANN 

 

Fig. 12 Model prediction vs actual values with regression lines 
for all three models (RF, GB, ANN) 

Fig. 12 depicts the predicted-versus-observed 
comparisons for RF, GB, and ANN, with regression 
lines closely fit to the observations for all three mo-
dels. This shows that all models have performed well 
in predicting temperature values, hence are high in ac-
curacy. This strong agreement of the regression lines 
with the actual data underscores the sound capacity of 
the models in temperature prediction. In order to en-
rich the explanations of model performance, it would 
be helpful to discuss in greater detail how these regres-
sion lines were created and what their significance is 
in the context of validating the models' predictive abi-
lity. 

 Statistical Significance Analysis 

To assess whether the observed differences in pre-
dictive performance across Random Forest (RF), Gra-
dient Boosting (GB), and Artificial Neural Network 
(ANN) models were statistically significant, an 
ANOVA was performed on the residual distributions, 
followed by pairwise paired t-tests with Holm–Bon-
ferroni correction. The one-way ANOVA yielded F = 
0.3235, p = 0.7251, indicating that the variance in re-
siduals across the three models was not statistically sig-
nificant. Subsequent pairwise comparisons further 
confirmed the absence of significance at α = 0.05  
(Fig. 12).

Tab. 6 Statistical significance analysis of model residuals using pairwise paired t-tests with Holm–Bonferroni correction 

Comparison Raw p-value Adjusted p-value Significant (α = 0.05) 

RF vs GB 0.1376 0.4128 No 

GB vs ANN 0.2325 0.4651 No 

RF vs ANN 0.9567 0.9567 No 

 
These results confirm that while RF achieved 

slightly better predictive accuracy in terms of MSE and 
R², the differences among the three models are not 
statistically significant at the 95% confidence level. 

This suggests that all three algorithms are capable of 
capturing the dominant thermal behavior trends 
within the available dataset, though tree-based models 
exhibit relatively stronger robustness. 

 

Fig. 13 Pairwise statistical comparison of model residuals (Holm–Bonferroni adjusted p-values) 
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Figure 13 (a) presents the distribution of residuals 
(prediction errors) for the Random Forest (RF), Gra-
dient Boosting (GB), and Artificial Neural Network 
(ANN) models. All three models show residuals scat-
tered around zero, with no evident systematic bias. 
While ANN exhibits slightly larger spread compared 
to RF and GB, the overall distributions are overlap-
ping, suggesting comparable predictive accuracy. 

Figure 13 (b) shows the pairwise p-values from 
paired t-tests with Holm–Bonferroni correction. 
None of the adjusted p-values fall below the signifi-
cance threshold (α = 0.05), indicating that the perfor-
mance differences among RF, GB, and ANN are not 
statistically significant. This means that although RF 
and GB tend to have slightly lower error dispersion 
than ANN, the differences could be attributed to ran-
dom variation rather than true model superiority. 

 Conclusion and Future Scope 

This study successfully integrates machine learning 
models and traditional optimization methods to 
achieve precision and accuracy in cylindrical grinding 
operations. The results signify that the Random Forest 
(RF) model, with an R² score of 0.96, surpasses Gra-
dient Boosting (GB) and Artificial Neural Networks 
(ANN) in predicting grinding temperatures-i.e., better 
prediction. Bayesian optimization and genetic algo-
rithms were applied to attain optimization of grinding 
parameters and cooling methods, further reducing 
grinding temperatures and improving surface quality. 
Among all cooling methods studied, MQL with HP 
SYNTHCOOL 100 had the greatest potential for tem-
perature control compared to dry cooling methods in 
terms of energy consumption and environmental im-
pact. Thus, the optimization minimized not only ther-
mal damage but also contributed to a greener and 
more efficient manufacturing process. Further, the 
study exhibits how AI-based techniques can enhance 
machining performances, conserve resources, and im-
prove surface integrity. 

Future scope may include enlarging the data set 
and testing the methodology for differing machining 
operations to know the generic adaptability of the mo-
dels. Optimization of machine learning models can be 
pursued further, and newer cooling methods can be 
investigated towards improving the robustness of the 
models as well as reducing the residual stresses and 
surface defects. With such advances, this research may 
lead to the application of such methods in high-preci-
sion green manufacturing. 
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