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The paper focuses on the application of machine learning techniques and optimization algorithms in
predictions and controls of grinding temperature variations. The major thrust of investigation has been
on how the different input conditions such as feed, depth of cut, and cooling conditions influence grind-
ing temperatures and the effectiveness of these conditions on the control of their thermal effects. Three
machine learning models: Random Forest (RF), Gradient Boosting (GB), and Artificial Neural Networks
(ANN) were then used to develop prediction models for the grinding temperature on both face and shoul-
der of the workpiece. Out of all the models, RF achieved a much higher R? score of 0.96 as compared to
both GB and ANN, indicating its greater predictive performance. Furthermore, Bayesian optimization
and genetic algorithms were employed in model optimization and grind parameters and cooling condi-
tion optimization to avoid damages caused due to temperature. MQL has been found to be highly supe-
rior to the inefficient dry cooling methods in terms of achieving lower grinding temperatures and, there-
fore, seems to be most suited as an eco-friendly yet practical cooling solution as based on this compari-
son. Altogether, these research findings indicate that Al-based techniques and traditional optimization
methods can lead to much better grinding in terms of efficiency and energy consumption, as well as
surface quality, and assist towards greener manufacturing altogether.

Keywords: Cylindrical Grinding, Machine Learning, Random Forest, Gradient Boosting, Artificial Neural Net-
works, Temperature Prediction, Optimization Algorithms, Cooling Conditions

1 Introduction grinding induce thermal expansion, phase transforma-

Grinding technology is extensively applied in ma- tion, and plastic deformation in the more thin-walled

. . . workpieces, resulting in residual stresses and distor-
nufacturing industties, e.g., composites, aecrospace all-

. . . L tion [4]. While FE simulation is an attractive method
oys, and wind turbine blades, and its machining ac- 4]

. . for predicting distortion at a low cost, it does require
curacy directly affects the working performance and p & ’ d
surface integrity of workpieces [1]. While grinding
processes produce surface thermomechanical da-

mages in hard components owed to high frictional

a long time for the modeling and solving of complex
nonlinear equations, which dictate thermal and me-
chanical effects [5]. High-end real-time measuring
heat, these damages lead to the formation of tensile tec.hnologies along with Artificial Intelligence (Al) are
residual stresses, lowered hardness, rehardening, and going to reform the whole manufacturing process as
micro-cracking, which demand the development of a
reliable damage detection method [2]. Grinding, one

of the most important processes for obtaining good

they technically permit efficient collection, storage,
and data analysis for process optimization. Machine
Learning (ML), a specific and important aspect of Al,

. . . is extremely competent in analyses of huge, complex
quality surfaces of steel, is influenced by the geometri- y P ) 8 p

cal changes and changes in material properties under-
neath the surface, which interfere with the functiona-
lity and reliability of a component [3]. The high tem-
peratures and mechanical stresses associated with

databases, improving the accuracies of predictions,
and offering a new lease of life to the old and well-
established processes in manufacturing at advanced le-
vels [6].
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Recent research revealed that there are still many
open questions regarding the dynamics of energy par-
tition in belt grinding and the thermal and mechanical
behaviours of the grinding process. This topic is being
addressed through coupling single grain scratch tes-
ting with a finite element analysis method to calculate
energy distribution, yet more general models are still
awaited. For instance, an effective model was propo-
sed, which calculates the dynamic energy partition in
robotic belt grinding, and verification tests have
shown that an error of 17.2% concerning specific
workpieces, such as SUS304 and AAG061-TO, is atta-
inable [7]. The same improvements have been made
to thermal modeling in cup wheel grinding by incor-
porating the geometry of wheelwork contact at which
heat distribution occurs during grinding. The resultant
improved model has great significance, giving etrrors
in grinding temperature predictions below 6.6% [8]. In
rail grinding, the thermal model was proposed to pre-
dict the grinding temperature and analyze the forma-
tion of white etching layers (WEL) that establish at
about 400°C, but a robust model for WEL formation
prediction, as well as the effects of thermal and me-
chanical stresses, is still required [9].

With all the thermal-induced effects of laser irradi-
ation being integrated into the laser-assisted grinding
process, much work is still left to prediction models
for surface roughness and topography in LAG of zir-
conia ceramics. Theoretical and experimental works
have shown good congruence with the surface rou-
ghness values, though further refinement of the model
for temperature-dependent material properties is still
needed [10]. In ultra-precision grinding, better un-
derstanding has been gained about the influences of
both cutting speed and depth-of-cut on damage at the
surface and below it; the cuts show improved results,
such as reduced surface roughness and subsurface da-
mage, as cutting speed increases [11]. In the manu-
facturing industries, like for instance the solid wood
panel and concrete industries, the AIOGA opti-
mization techniques are proven to be good at impro-
ving scheduling, thereby minimizing operational time
[12]. Hybrid algorithms such as GEP-PSO have also
yielded very promising developments in machining
processing. They include reducing energy usage and
tool wear while upholding surface quality in machining
superalloys [13]. In addition, machine learning appro-
aches like GA-BP neural networks helped make im-
provements in pressure monitoring for drilling appli-
cations, which will provide other pressure monitoring
types of reference for future uses [14].

Applications of GMDH ANN, in conjunction
with evolutionary algorithms NSGA-11, MOPSO, and
MOGWO, to predict the rheological behavior of CuO

NPs, have largely succeeded. However, the Genetic
Algorithm (GA) was declared to be best performing
among all studied techniques [15]. Also, Inconel 690,
given its heat resistance, is known for being difficult
for machining, which, therefore, makes it even more
important for tuning of conduct on lubrication strate-
gles and optimization algorithms. NSGA-11, however,
particularly proved to be successful, at a success rate
of 82.3% against 79.1% by TLBO; hence faster and
more efficient for machining optimization application
[16]. Finally, the hybrid optimization approaches that
combine Bayesian optimization and NGBoost have
proved useful for optimizing the concrete production
mix design. These advances reduce costs and carbon
emissions tremendously [17]. According to the fuzzy-
AHP-MOORA method applied to AISI 304 stainless
steel, with trials 12, 14, and 8 occupying the 1st, 2nd,
and 3rd positions based on differences of 0.2133,
0.2076, and 0.1083, respectively, bushing length un-
dergoes the most prominent improvement [18], im-
plying the need to select the parameters carefully for
the purpose of quality control in thermal friction
drilling. For grinding AISI 1060 high-speed steel, the
combined effects of compressed air, MQL, and nanof-
luids are being investigated, with the best working
mode found to be MQL combined with compressed
air, where higher cutting speeds improved the surface
roughness, but the cutting temperature was a trade-off
[19]. In the meantime, the grinding process of
W18CR4V steel was optimized using machine-lear-
ning models such as DNN-GA while also attaining
about 81.5% and 77.7% reduction in Ra and Rz, re-
spectively, wherein DNN-GA obtained an R* > 0.99
and better optimization results via MOGWO [20]. Fi-
nally, Inconel 718's micromilling under MQL lubrica-
tion brought forth the clear effect of cutting parame-
ters wherein depth of cut and feed per tooth had the
highest effect with the optimal parameters ap = 0.010
mm and fz = 0.008 mm/tooth with surface roughness
of 0.24 um and channel depth deviation of 0.41 um
[21]. These advances further give hope that a combi-
nation of multiple optimization algorithms could solve
the varied problems of manufacturing in many in-
dustries. Table 1 presents an inclusive summary of di-
fferent studies with descriptions of materials, model,
optimization algorithm, important findings, and re-
sults. The studies pertain to grinding processes, ma-
chining optimizations, and predictive modeling,
highlighting the applications of advanced algorithms
such as FEM, NSGA-II, and GA-BP. The results
show that all such methods have been highly success-
ful in optimizing energy efficiency, surface quality, and
costs in respective raw materials and processes.
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Tab. 1 Summary of Materials, Models, Optimization Algorithms, Key Findings, and Results from Relevant Studies

Ref. Material Optimization ..
No. Used Model Used Algorithm Key Findings Results
The model for dynamic energy parti- The method showed a maximum
7 SUS304, Dynamic energy FEM, Iterative tion considers grinding effects and error of 17.2% for energy parti-
7] AAG6061-T6 partition model approach thermal aspects, calculating energy tion, enhancing understanding of
partition in continuous grinding. robotic belt grinding.
. The model demonstrated <6.6%
. . The model integrates wheelwork con- .
Cup wheel 3D analytical . o error for maximum temperature
18] - FEM tact geometry to predict grinding tem- o
grinding thermal model IR and <8.5% error for temperature
perature distribution. location
. Non-uniform | Predicts grinding temperature and ana- The WEL forms at gr;ndmg tem-
. . Analytical thermal . peratures around 400°C, with re-
[9] | Rail material ’ heat source dis- lyzes the effect of surface burn and . . .
model o . . tained austenite and martensite
tribution white etching layer (WEL). observed on the sutface
. Developed a predictive model for sur- Experimental results closely
- . N Stochastic pro- ; . . . . .
Zirconia ce- Grinding wheel face topography in Laser-Assisted matched simulations with errors in
[10] . cess, thermal o N S
ramics model . Grinding (LAG), considering laser surface roughness (Rz and Ra)
modeling . o
power and material removal. <8%.
. . . Found linear relationship between
Fine- - Experimental, Investigated surface roughness and
. Grinding process | . . surface roughness (Ra) and SSD
[11] grained . . interferometry subsurface damage under different Lo o
- simulation . . depth with significant reduction in
grinding analysis depth-of-cut and cutting speed. SSD with increased cutting specd
. . . A.I OGA (Adap- A.IOGA improved schedu.hng for' AIOGA reduced maximum com-
Solid wood | Simulation system | tive Intelligent solid wood panel production by opti- S .
[12] . . . o pletion time by 39.60%, enhancing
panel for production Optimization mizing completion times and work- oerational efficiency
GA) load balance. P ¥
. L Achieved a 20% energy reduction,
Gene Expression | Particle Swarm SBTP-PHS?IEP Snizauri)n ;ejrlrllci:(} err;— 18.68% reduction in carbon emis-
[13] | Inconel 690 | Programming Optimization £Y consumption, Carbon emissions, |, n¢ 90,219 reduction in surface
cost, surface roughness, and tool wear N .
(GEP) (PSO) . . roughness, and 31.71% reduction
during Inconel 690 machining. in tool wear
_ H i H 0 _
Wéﬂ area X BP and GA-BP Genetic Algo- GA. BP model ()gtperformed BP in GA BP a;hleved 92.89% accuracy
[14] (Yinggehai . monitoring formation pressure during | in formation pressure monitoring,
; Neural Networks rithm (GA) 2 . . )
Basin) drilling, improving accuracy. surpassing BP's 91.25%.
Nanofluids NSGA I, A (%\1)%{ ‘i{iﬁeﬁlﬁ?ﬁiwﬂm_ Achieved optimal viscosity (1)
[15] | with CuO GMDH ANN MOPSO, ? provided the best p prediction at 0.96686 cP with opti-
mance in predicting viscosity of N
NPs MOGWO . mized input parameters.
nanofluids.
NSGA-II outpetformed TLBO in ma- | NSGA-II achieved 82.3% success
16 Inconel 690 Taguchi 1.27 or- NSGA-II, chining optimization for Inconel 690, rate, with faster computation (8.3
[16] cone thogonal array TLBO achieving a higher success rate and seconds) compared to TLBO (5.6
faster computation. seconds).
Bayesian Opti- . o Optimal mix reduced costs _by
o Hybrid optimization reduced segment | 31.64 yuan and carbon emissions
17] Segment NGBoost, uzation, concrete production costs and carbon | by 31.04 kg per cubic meter, with
L concrete NSGA-III NGBoost, nerete p o ot A Yo EP ’
NSGA.IT emissions, improving mix proportions. an 11.5‘/0 1rnprovet_ne_nt over ex-
perimental optimization.
AISI 304 Analytic Hierar- The best parameters were selected for Experimental trlals-lZ, 14,and 8
. Fuzzy-AHP- chy Process C s . were found to achieve the best
(18] stainless MOORA method | (AHP), Fuzzy thermal friction drilling using fuzzy- ositions, with improved response
steel et > AHP-MOORA. P > Wit P P
framework for bushing length.
AISI 1060 Horizontal Spin- | Entropy-based MQL with compressed air and nano- At higher cutting speeds, better
[19] | high-speed dle Surface TOPSIS, particles showed the best perfor- surface finish was achieved, with
steel Grinder VIKOR mance, with improved surface finish. varying cutting temperature.
Deep Neural Net-
works (DNN), K- | Genetic Algo-
Nearest Neigh- r1thrn (('}A)', DNN-GA model achieved significant Ra reduced to 0.34_1 pm, Rz to 2.3
[20] W18CR4V | bors (KNN), De- | Multi-Objective reduction in surface rouchness and um, and production times were
steel cision Trees Grey Wolf Op- " Hrace roug optimized between 1181 to 1426
AR production time.
(DT), Support timization s.
Vector Machines (MOGWO)
VM)
Optimal cutting parameters re-
Inconel 718 | Micromilling pro- Taguchi Depth of cut and feed per tooth sig- splted in a channel depth deyla—
[21] superallov cess method, nificantly influence cutting force and tion of 0.41 pm, burr formation
up Y TOPSIS surface roughness. height of 6 pm, and surface
roughness of 0.24 pm.
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There has been a limited number of studies inves-
tigating dynamic energy partitioning in belt grinding
with specific emphasis on integrating thermal and
grinding effects. Most of the thermal models that have
been developed for cup wheel grinding ignore the
effect of geometry of contact between wheel and
workpieces. Thus, heat transfer assumptions have
been overly simplified. The same situation is given
when concerning rail grinding, in that, there are few
studies that can accurately predict the formation of the
white etching layers (WEL) and study their combined
ceffects with thermal and mechanical stresses. Howe-
ver, there is room for improvement in modelling sur-
face roughness while laser assisted grinding (LAG)
and ultra-precision grinding. Further investigation is
needed on hybrid optimization techniques so that they
reduce inefficiencies, optimize material use, and mi-
nimize carbon emissions, especially for scheduling in
some industries like solid wood panel production and
concrete manufacturing. This study, therefore, aims at
addressing such gaps; they include predicting tempe-
rature variations during grinding, Al-based opti-
mization to minimize temperature rise, and compara-
tive studies on cooling conditions, Dry and Minimum
Quantity Lubrication (MQL). In addition, the research
shall entail the integration of machine learning models
such as Random Forest (RF), Gradient Boosting
(GB), and Artificial Neural Networks (ANN), which
will further enhance prediction accuracy and opti-
mization of the grinding process. These machine lear-
ning models will offer a basis of understanding how
cooling methods influence thermal stresses and sur-
face quality, all of which ultimately bring about susta-
inable and efficient manufacturing processes. This
study will fill existing gaps in dynamic energy partitio-
ning and cooling optimization in advanced grinding
processes such as LAG and ultra-precision grinding.

2 Materials and Experimental Setup
2.1 Workpiece Material and Specifications

The material used for the workpieces for cylindri-
cal grinding experiments was EN31 steel, which is
knowing for its hardness at 50 HRC and for having
wear resistance. Its chemical composition included
Carbon (1%), Chromium (1.40%), Manganese
(0.50%), and others as alloying elements. Specimens
were prepared by facing, turning, and step turning,
followed by deep oil hardening. Holes were made by
Electrical Discharge Machining (EDM) for embed-
ding thermocouples to measure the temperature. A
specially designed test rig with slip rings was made to
take care of proper temperature sensing and rotation
during grinding.

2.2 Grinding Conditions and Process Parameters

2.2.1 Control Parameters

The four major parameters of the machining pro-
cess determined to be in focus for this study were sub-
sequently investigated to understand their effect on
cylindrical grinding performance. The selected para-
meters varied from 0.025 mm to 0.04 mm for the
depth of cut and were directly proportional to the
amount of material removed per pass; the rate of feed
that was taken into account, especially concerning the
material removal rate and sutface finish; the work
speed, whose variations were 100-250 rpm, and it was
said to be in favour of keeping the right balance of
heat generation and wear rate of the grinding wheel;
similarly, the wheel speed was maintained between
948 rpm and 1186 rpm and exerted a great influence
on the size of abrasive chips and the subsequent ther-
mal effect on the workpiece. In an ordered approach,
the investigation established a systematic method of
analysis of these parameters through the Taguchi L29
orthogonal array as the experimental design for an
effective investigation of combinations of parameters
by conducting 29 designed experiments. The opti-
mization approach was based on the Smaller-the-bet-
ter quality objective, aiming toward minimizing the
critical output responses like temperature and surface
roughness to render the grinding process much more
upgraded in terms of its quality and integrity.

2.2.2 Cooling Methods

The investigation involved grinding experiments
performed under three different cooling conditions to
analyse the effect of thermal performance and surface
integrity. The first cooling condition was dry grinding
with no cooling, which poses a great risk of thermal
damage due to excessive heat generation during grin-
ding. Second condition is more developed method of
cooling is Minimum Quantity Lubrication (MQL),
where the amount of fluid used is reduced significantly
by applying only a highly controlled mist of lubricant
in the grinding zone. Two types of MQL fluids were
used: HP KOOLKUT 40-an ordinary emulsifiable oil
that forms a milky white emulsion and HP
SYNTHCOOL 100-a semi-synthetic cutting fluid low
in concentration but possesses great thermal proper-
ties and it is fluorescent yellow in colour. Both MQL
types show excellent heat dissipation, surface finish
improvement, and significant resistance to bacterial
contamination, making them feasible alternatives for
environmentally friendly and high-performing grin-
ding operations.
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Tab. 2 Physio-chemical properties of HP KOOLKUT 40

Properties HP KOOLCUT 40
Colour After Emulsification Milky White
Kinematic Viscosity at 40 °C, Min, CST 20
Flash Point, COC °C, Min 150
Coppet Cotrosion at100 °C, Min 1
Cast Iron Corrosion Test, 20:1 Emulsion with 400 PPM Hard Water Max 0/1-1

Tab. 3 Physio-chemical properties of HP SYNTHCOOL 100

Properties HP SYNTHCOOL 100
Appearance Florescent yellow
Copper Strip Corrosion 3Hr 1 at 100°C, Max 1
1 :40 in Distilled Water 0/1-1
1:40 in Hard Water-200 PPM 0/1-1

Tables 2 and 3 show the physio-chemical propet-
ties of two cooling fluids: HP KOOLKUT 40 and HP
SYNTHCOOL 100. HP KOOLKUT 40 is milky
white after emulsification, and at 40°C, it manifests a
kinematic viscosity of 20 CST, with a flash point of
150°C, while in the cotrosion test, it was rated 1 for
copper corrosion and 0/1-1 for cast iron corrosion at
20:1 emulsion with 400 PPM hard water. In the case
of HP SYNTHCOOL 100, it is fluorescent yellow in
appearance, giving a copper strip corrosion rating of 1
after 3 hours at 100°C. Cotrosion tests at 1:40 in dis-
tilled and hard-water (200 PPM) gave 0/1-1, thus con-
firming its stable behavior under various conditions.

2.3 Experimental Setup and Measurement Tech-
niques

Works on the AHG-60X300 CNC Grinding Ma-
chine, conceived and produced by Parishudh Ma-
chines Pvt. Ltd., are on samples that can ac-
commodate workpieces with grinding widths of up to
60 mm and center distances of 300 mm. A custom test
rig was developed to ensure accurate thermal analysis
during grinding and was made up with embedded
thermocouples, slip rings for power transfer, and a 10-
channel data logger. This system allowed multi-point
temperature monitoring of the rotating workpiece un-
der various cooling conditions so that accurate and
consistent data could be gathered during the grinding
operation.

The experimental set-up, which is a sort of instal-
lation for temperature measurement during external
cylindrical face, and shoulder grinding operations, is

depicted in Fig. 1. Viewing various components of the
CNC grinding machine superimposed by the temper-
ature-measuring instruments, such as thermocouples
and a data logger, it is evident that temperatures are
measured in real time as the grinding proceeds.

Table 4 delineates the design specifications of the
CNC face and shoulder grinding machine of type
AHG-60X300. The main specifications include the
maximum workpiece width of 60mm, maximum
distance between centers of 300mm, external whee-
lhead with grinding wheel of size 500mm x 254mm.
The machine is operated by a power source of 7.5 kW
AC induction motor with a rapid feed of 10m/min,
requiring an overall power of 25 kW and weighing
4000 kg making it suitable for precision grinding.

ped

Experimental Setup

Fig. 1 Experimental Setup for Measuring Temperature in
External Cylindrical Face and S houlder Grinding Operation
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Tab. 4 Specifications of Face and Shoulder grinding machine used

Item Specification
AHG- 60X300 CNC
Machine Type Maximum width of the work piece to be grind=60mm,

Maximum Distance between centers = 300mm.

Manufactures Name

Parishudh Machines Pvt. Ltd.

Capacities

Distance between centers: 300mm

Centre Height: 130mm

External Wheel Head

Grinding Wheel (OD x ID) = ¢p500mm X ¢ 254mm

Maximum Width: 60mm

Spindle

Work Head (Dead)

Spindle Speed (infinitely variable):50 — 650 rpm
Spindle motor (AC Servo Motor): 6NM

Motor (AC induction Motor): 7.5 Kw
Grinding Speed: 45m/s

Infeed Slide (X-Axis)

Feed A. C. Servo Motor: 6NM

Total Stroke: 200mm
Rapid Feed rate: 10m/min

Input Resolution: 0.0001mm

Table (Z-Axis)

Feed A. C. Servo motor: 6NM

Total Stroke: 400mm
Rapid feed rate: 10m/min

Input Resolution: 0.001mm

Travel: 40mm

Tot

Tail Stock Assembly
Centre: MT 4
Coolant Pump Motor: 1.5KW
General Total power requirement: 25Kw

al Weight of the machine: 4000kg

3 Methodology

The dataset used for prediction of temperature in
cylindrical grinding operations included input features
like Depth of Cut, Feed Rate, Work Speed, Wheel
Speed, and Cooling Condition. Since cooling condi-
tion was a categorical variable with three classes,
namely Dry, MQL with HP KOOLKUT 40, and
MQL with HP SYNTHCOOL 100, OneHotEncoder
encoding was performed to render it interpretable by
machine-learning models. To maintain uniformity
during the training process and avoid any single fea-
ture dominating on account of differences in scale, all
input variables were normalized using Standard-
Scaler(), thereby converting them into a standard

Gaussian distribution. After preprocessing and re-
moval of incomplete records, the final dataset con-
sisted of 86 samples. The data were then split into
training and testing sets using an 80:20 ratio, resulting
in 68 samples in the training set and 18 samples in the
testing set. Stratified sampling was applied to preserve
the distribution of the three cooling condition classes
across both subsets, thereby minimizing potential
class imbalance and ensuring effective generalization.

3.1 Machine Learning Models for Temperature
Prediction

3.2.1 Random Forest Regressor (RF)
Random Forest Regressor (RF) is an ensemble-
based machine-learning model that came into use in
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this study because of its ability to improve the pre-
diction accuracy through the ensemble technique of
combining multiple decision trees [22-24]. Particularly
suited for non-linear relationships on complex data
sets like those arising in machining operations, RF
averts overfitting by prediction averaging of many de-
cision trees and increases generalization in creating a
prediction. The performance of the model was fine-
tuned by changing its key hyperparameters: the num-
ber of decision trees (n_estimators) varied between 50
and 200, max depths of each tree (max_depth) from 5
to 50, and the minimum number of samples required
to split an internal node (min_samples_split) ranged
from 2 to 10. With optimized hyperparameters, the RF
model went on to predict grinding temperatures with
significant accuracy under different conditions set for
the process.

RF: y = % Zf;l T; (x) M

3.2.2 Gradient Boosting Regressor (GB)

Gradient Boosting Regressor (GB) was selected
for its promise in minimizing bias and variance from
a perspective of sequential learning, where trees are
built one after the other [22-24]. The GB method
sequentially constructs trees in a way that each new
tree is trained to correct the residual errors of the
aggregate ensemble of previous trees-a property that
allows further adjustments in GB for model accuracy
incrementally, rewarding the method against complex
regression challenges like temperature prediction in
grinding operations. The engine was modeled through
tuning processes in which the n_estimators were va-
ried from 100 to 300, learning_rate from 0.005 to 0.2,
max_depth from 4 to 50, subsample from 0.6 to 1.0,
and min_samples_split from 2 to 10. These settings
provided a balance between training capacity and
avoiding overfitting.

GB:Ym = Im-1+ 1 fm(x) 2

3.2.3 Artificial Neural Networks (ANNN)

Artificial Neural Networks (ANNs) were to model
complex non-linear interactions among input features
through the Multi-Layer Perceptron Regressor
(MLPRegressor) [22-24]. The ANN design closely
tracked the intricate patterns of the dataset; the tree-
based ones would never unlock. The network archi-
tecture consisted of three hidden layers with several
neurons in each layer being 200, 200, and 100, re-
spectively, ensuring deep learning turns. The introdu-
ction of non-linearities was performed by the tanh
activation function, whereas weight optimization was
done with Ibfgs solver. In addition to that, the learning
rate was adaptively modified to suit different gradient
behaviours during training, up to 10,000 iterations
being taken to ensure proper convergence of the mo-

del. This setting allowed the ANN to perform remar-
kably well in prediction scenarios where slight or even
complex interactions among features are involved.

ANN: yO = fF(Ww® - y=D 4 phy ?3)

3.2 Hyperparameter Optimization using Baye-
sian Search

Hyper-parameter tuning of all three machine lear-
ning models was performed with Bayesian Opti-
mization, leveraging the probabilistic approach to op-
timize the search space effectively and decrease the
prediction error. The performance of the models was
evaluated during this process by three important me-
trics: the squared difference between the predicted va-
lue and true value, averaged over all observations
(Mean Squared Error, MSE); the proportion of vari-
ance in the target vatiable accounted for by the model
(R? Score); and the average magnitude of the error in
the predictions (Mean Absolute Error; MAE). Con-
vergence was decided when either validation loss pla-
teaued or the validation accuracies crossed the defined
thresholds over 20 consecutive iterations, ensuring
best model performance with no overfitting.

3.3 Genetic Algorithm for Process Optimization

The grinding process was optimized by a genetic
algorithm. The aim of the genetic algorithm is to yield
the minimum grinding temperature through the most
favourable combination of process parameters and
cooling methods. The developed fitness function was
based on the temperature prediction by the trained
model.

The Genetic algorithm (GA) with a population size
of 20 individuals per generation was employed to dis-
cover the optimal machining parameters and cooling
condition, incorporating tournament selection in the
design to maintain robustness, ensuring survival for
high-quality solutions. Blend Crossover (CX) and
Gaussian mutation operators were used in selecting
the appropriate genetic operators to increase genetic
diversity and diminish convergence to local minima.
The GA, very iteratively running through many gene-
rations of evolution work, developed the best confi-
guration to minimize grinding temperature.

This flowchart in Fig. 2 explains the entire process
of predicting and optimizing the grinding process. It
begins with the preprocessing of data, i.e., encoding
and scaling of input features, and the splitting of data
into training and testing datasets. Case modeling and
training employ methods such as Random Forest,
Gradient Boosting, and Artificial Neural Networks to
predict grinding temperatures. Hyperparameter tuning
and genetic algorithms are implemented in the final
step to optimize other process parameters such as
cooling conditions for greater efficiency and accuracy
in the grinding process.
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Fig. 2 Flowchart of research methodology of RGA_INN model

4 Results and Discussion

This section of the paper discusses the experimen-
tal results obtained using machine-learning models
employed for temperature prediction in cylindrical
grinding operations. Various evaluation metrics-corre-
lation analysis, residual analysis, confusion matrices,
and performance comparison of the models-are
discussed in detail.

4.1 Correlation Analysis

Constructing a correlation matrix helps to study
the inter-relationships among input features (depth of
cut, feed rate, work speed, wheel speed, and cooling
conditions) and output variables (temperature at the
face and shoulder). As shown in Fig. 3, the heatmap
employs a color scale that varies within a continuous
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range of hues as they traverse from strong red to
strong blue color, with lighter, less intense colors used
to mark positive and negative correlations. The he-
atmap shows that temperature at the face and shoulder
is strongly positively correlated (0.81-0.84) with coo-
ling conditions, especially with the MQL using HP

SYNTHCOOL 100, being most effective for tempe-
rature reduction as compared to other cooling tech-
niques. To yield a clearer understanding of the given
data, an elaborate explanation concerning the color
scale and interpretation with respect to accuracy of
model prediction is needed.

Depth of Cut- ©.21

Feed Rate - -0.36

Work Speed - o0.28

Wheel Speed - 0.40

Surface Roughness at Face - 0.02
Surface Roughness at Shoulder - 0.04
Temperature at Face - 0.08
Temperature at Shoulder - 0.05
Force at Face - 0.09

Force at Shoulder - -0.15

Dry - 0.00

MQL_HP_KOOLKUT - 0.04

MQL_HP_SYNTHCOOL - -0.04

Feature Correlation Heatmap
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0.04 0.08 0.05 0.09 Sl 0.00 0.04 0.04

- 0.75

- 0.50

- 0.00

- —0.25

- —0.50

- —0.75

Fig. 3 Feature Correlation Heatmap

There was a strong correlation between the face
and shoulder workpiece temperatures, with coeffi-
cients in the range of ~0.81 to 0.84, which signifies
that if one temperature increases, the other typically
follows. Of all variables, the cooling condition was the
most dominant. Minimum Quantity Lubrication
(MQL) with HP SYNTHCOOL 100 resulted in a sub-
stantially lower temperature compared with either dry
or any other cooling conditions. Feed Rate and Work
Speed were shown to moderately influence tempera-
ture change, which represented a key quantity for ther-
mal control during the grinding operation.

4.2 Relationship Analysis in Pairs

This plot was created which visualizes the distri-
bution and interaction between input features and the
target variable.

Fig. 4 shows the effect of feed rate on temperature
at the face and shoulder during grinding. The graph
depicts a more or less steady rise of temperature at the
face with increasing feed rate, while the shoulder tem-
peratures vary almost independently from the feed

rate, suggesting that the face temperature is much
affected by the feed rate. The shaded regions represent
the margin of error or difference in temperature data
at every feed rate, presenting an idea of the extent of
temperature variation in the measurements. An elabo-
rated explanation of this variability would better illu-
minate the feed rate-temperature relationship, thereby
giving greater and enhanced insight into the mecha-
nism of the grinding process.

Fig. 5 depicts the variations in temperature at the
face and shoulder as influenced by the depth of cut.
Aprove heighting temperatures at both locations dec-
line with an increase in the depth of cut; the variation
in temperature is higher in the face than the shoulder.
This indicates that the cooling effect of the depth of
cut is more profound on the face of the workpiece.
The shaded regions depict the variation in tempera-
ture data for different depths of cut. This further goes
to show how deeper cuts are able to cool the face bet-
ter and should be studied further to stress the practical
importance of utilizing cutting depth during machi-
ning operations for better thermal management.
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Fig. 4 Effect of Feed Rate (FR) on Temperature

Fig. 5 Effect of Depth of Cut (DOC) on Temperature
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Fig. 6 shows the pair plot showing the relationships
between features (Depth of Cut, Feed Rate, Work
Speed, and Wheel Speed) with the target variable tem-
perature at face. The pair plots comprise scatter plots
between one feature and another with distribution dis-
tribution histograms on the diagonal. These scatter
plots show that there are trends between temperature

at the face and features like Feed Rate and Work Speed
while the histograms show the feature-wise distri-
bution within the dataset. The trends in these scatter
plots must be explained deeply, especially about how
feed rate and wheel speed relate to face temperature,
as it would give deep insight into the mechanistics of
the grinding process.
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It was found that the distributions of parameters
could be analysed with respect to their depth of cut
and feed rate, which play different roles in tempera-
ture development during grinding. The localized heat
generation would be due to changes in depth during
cutting, while the feed rate would account for the total
thermal load for a certain amount of time. Great work
speed and wheel speed, in some of the experimental
cases, lowered the temperature. This may indicate that
these factors could enhance the heat dissipation pro-
cess and improve the overall thermal behavior during
grinding. These findings adequately emphasize the
precision of balance of input parameters to afford heat
production management.

4.3 Residual Analysis

Different models are evaluated by analysing
upright residual plots. The box plot of residuals for
RF, Gradient Boosting, and ANN is in Fig. 7; the plot
gives us a glance on the error ranges of the different
methods: From this plot, we observe that Random Fo-
rest and Gradient Boosting models observe lesser out-
liers with the ANN model having an open-ended
spread of residuals, implying a high variance in its pre-
dictions. With respect to residuals, a more balanced
residual distribution is shown by the Random Forest
model, hence making it more reliable. An explanation
of the importance of these residuals and how they
affect the prediction accuracies of the models would
help in defining further aspects of model perfor-
mance.

The diverse nature of the residual analysis stands
out in contrasting the performances of different ma-
chine learning models. The Random Forest model
exhibited reasonably balanced residuals with lower va-
riance, showing thatits predicted results can be trusted

across the dataset. The Gradient Boosting model, on
the other hand, displayed a slightly wider scatter of the
residuals, suggesting minor inconsistencies in predicti-
ons that could be arising due to complex interdepen-
dencies in the data. The Artificial Neural Network
(ANN), meanwhile, exhibited the highest residual va-
riance, indicating that the model might require additi-
onal tuning for greater stability and generalized pet-
formance. Such deductions suggest that Random Fo-
rest is equally reinforced as the strongest model in this
research.

Box Plot of Residuals for Each Model

‘ _ ]

Residuals

-3 &

Random Forest Gradient Boosting ANN

Fig. 7 Box plot of residuals for each model
4.4 Residual Distribution Across Models

Fig. 8 shows residual histograms for the RFs, GBs,
and ANN models for error and prediction trend ana-
lysis. The histograms reveal that the Random Forest
model residuals were tightly distributed about zero
and, hence, well-predicted; whereas the ANN residu-
als were scattered, indicating that more optimization is
required. Gradient Boosting also showed more varia-
tion in errors when compared to the Random Forest
model. Understanding these residual trends and the
consequences for model performance will better in-
form model utility and areas for further improving the
model.

Residuals Distribution - Random ForesResiduals Distribution - Gradient Boosting

Residuals Distribution - ANN
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Fig. 8 Residuals distribution for each model
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Refitting of the residual distribution indicated sub-
stantial variation among the models under considera-
tion. The Random Forest model presented a concen-
trated distribution of residuals about the zero line;
hence, making predictions that were largely correct
with little bias from the mean. In contrast, the Gradi-
ent Boosting model presented a slight skewness in its
residuals, which implied some level of over-predicti-
ons displayed by the model especially in the higher
temperature range. On the contrary, scattered residu-
als of ANN suggested wide variability in prediction,
warranting further optimization improvements for ac-
curacy and consistency. These findings indicate that
while Random Forest almost perfectly captured the
phenomenon being modelled, some further tuning
and refinement apply to Gradient Boosting and ANN.

4.5 Model Comparison Metrics

The analysis of the performance of the models
affirmed that Random Forest had the best perfor-
mance, having the least Mean Squared Error (MSE)
and the highest R* score, with a direct implication that
it had a better ability in predicting deviation of
temperature with accuracy and least error. Gradient

Tab. 5 Performance of the models

Boosting had a rather good performance overall, but
because it exhibited a slightly higher error margin than
Random Forest, which leaves it up for further opti-
mization. Once properly optimized, ANN showed
competitive performance, however, with higher resi-
dual variance, suggesting that there is still scope for
improvement in terms of consistency in predictions
even after optimization. For the models to be asses-
sed, being on slightly more of the efficiency aspect,
MSE and R? scores were in comparison, with Random
Forest emerging as the most reliable among all; Gra-
dient Boosting and ANN holding promise yet should
be tuned in further for better performance. Table 5
provides a comparison of the Mean Squared Error
(MSE) and R? scotes for the three machine learning
models: RF, GB, and ANN. RF has the lowest error
and the highest goodness of fit, making it the best-su-
ited model for the temperature prediction task. An ap-
propriate explanation about the statistical significance
of the results, especially regarding how MSE and R?
are calculated and what they mean for model vali-

dation, would have undoubtedly improved the value
of this table.

Model MSE (Lower is better) R? Score (Higher is better)
Random Forest 1.3307 0.9631
Gradient Boosting 1.4669 0.9593
Artificial Neural Network 1.5302 0.9576

R? Score - Face Temperature RE Score - Shoulder Temperature

Fig. 9 R? score comparison of Temperature at face and shoul-
der for RE and ANN

Fig. 9 to 11 present a comparison of the three ma-
chine learning models Random Forest (RF), Gradient
Boosting (GB), and Artificial Neural Network (ANN)
to model grinding temperature at face and shoulder.
Fig. 9 shows that RF performs better than ANN in
modeling face temperature, with ANN doing better
for the shoulder temperature. Fig. 10 presents the
MSE values that point to slightly lesser errors of the
ANN in shoulder temperature predictions, hinting
that ANN can grasp some patterns better than RF,

even if RF stays better overall. Fig. 11 shows MSE and
R? scores for all three models. It is so evident that RF
and ANN behave equally well in MSE and R?, while
GB suffers from high MSE and low R? scores, basi-
cally meaning that RF is the most dependable model
for both temperature predictions. It would be worth
more discussing the practical value of these differen-
ces in model performance from the potential applica-
tion viewpoint of the grinding process and lowering
errors.

MSE - Face Temperature MSE - Shoulder Temperature

18

s

10
25

Randarm Farest Heural Network Random Forest Neural Network

ared Ermar
Mean squared Ermor

Fig. 10 MSE values comparison of temperature at face and
shoulder for RE and ANN
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Fig. 11 MSE values comparison of temperature at face and
shoulder for RF, GB, ANN
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Fig. 12 Model prediction vs actual values with regression lines
Sor all three models (RF, GB, ANN)

Fig. 12 depicts the predicted-versus-observed
comparisons for RF, GB, and ANN, with regression
lines closely fit to the observations for all three mo-
dels. This shows that all models have performed well
in predicting temperature values, hence are high in ac-
curacy. This strong agreement of the regression lines
with the actual data underscores the sound capacity of
the models in temperature prediction. In order to en-
rich the explanations of model performance, it would
be helpful to discuss in greater detail how these regres-
sion lines were created and what their significance is
in the context of validating the models' predictive abi-

lity.
4.6 Statistical Significance Analysis

To assess whether the observed differences in pre-
dictive performance across Random Forest (RF), Gra-
dient Boosting (GB), and Artificial Neural Network
(ANN) models were statistically significant, an
ANOVA was performed on the residual distributions,
followed by pairwise paired t-tests with Holm—Bon-
ferroni correction. The one-way ANOVA yielded F =
0.3235, p = 0.7251, indicating that the variance in re-
siduals across the three models was not statistically sig-
nificant. Subsequent pairwise comparisons further
confirmed the absence of significance at « = 0.05
(Fig. 12).

Tab. 6 Statistical significance analysis of model residuals nsing pairwise paired t-tests with Holm—Bonferroni correction

Comparison Raw p-value Adjusted p-value Significant (« = 0.05)
RF vs GB 0.1376 0.4128 No

GB vs ANN 0.2325 0.4651 No

RF vs ANN 0.9567 0.9567 No

These results confirm that while RF achieved
slightly better predictive accuracy in terms of MSE and
R? the differences among the three models are not
statistically significant at the 95% confidence level.

This suggests that all three algorithms are capable of
capturing the dominant thermal behavior trends
within the available dataset, though tree-based models
exhibit relatively stronger robustness.

Residual Distributions Across Models

Prediction Error (°C)

=3 °

°0

RF Residuals GB Residuals ANN Residuals

Painvise Holm-Bonferroni Adjusted p-values

pvalue ad) Hom- 0413 0465

RF vs 6B 08 vs ANN
Comparison

@

(b)

Fig. 13 Pairwise statistical comparison of model residnals (Holp—Bonferroni adjusted p-values)
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Figure 13 (a) presents the distribution of residuals
(prediction errors) for the Random Forest (RF), Gra-
dient Boosting (GB), and Artificial Neural Network
(ANN) models. All three models show residuals scat-
tered around zero, with no evident systematic bias.
While ANN exhibits slightly larger spread compared
to RF and GB, the overall distributions are overlap-
ping, suggesting comparable predictive accuracy.

Figure 13 (b) shows the pairwise p-values from
paired t-tests with Holm—Bonferroni correction.
None of the adjusted p-values fall below the signifi-
cance threshold (« = 0.05), indicating that the perfor-
mance differences among RF, GB, and ANN are not
statistically significant. This means that although RF
and GB tend to have slightly lower error dispersion
than ANN, the differences could be attributed to ran-
dom variation rather than true model superiority.

5 Conclusion and Future Scope

This study successfully integrates machine learning
models and traditional optimization methods to
achieve precision and accuracy in cylindrical grinding
operations. The results signify that the Random Forest
(RF) model, with an R? score of 0.96, surpasses Gra-
dient Boosting (GB) and Artificial Neural Networks
(ANN) in predicting grinding temperatures-i.e., better
prediction. Bayesian optimization and genetic algo-
rithms were applied to attain optimization of grinding
parameters and cooling methods, further reducing
grinding temperatures and improving surface quality.
Among all cooling methods studied, MQL with HP
SYNTHCOOL 100 had the greatest potential for tem-
perature control compared to dry cooling methods in
terms of energy consumption and environmental im-
pact. Thus, the optimization minimized not only ther-
mal damage but also contributed to a greener and
more efficient manufacturing process. Further, the
study exhibits how Al-based techniques can enhance
machining performances, conserve resources, and im-
prove surface integrity.

Future scope may include enlarging the data set
and testing the methodology for differing machining
operations to know the generic adaptability of the mo-
dels. Optimization of machine learning models can be
pursued further, and newer cooling methods can be
investigated towards improving the robustness of the
models as well as reducing the residual stresses and
surface defects. With such advances, this research may
lead to the application of such methods in high-preci-
sion green manufacturing.
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