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The effective application of additively manufactured materials requires accurate identification of their 
mechanical properties as well as damage mechanisms. Computer vision offers a novel approach for non-
contact measurements, enabling the identification of selected mechanical properties. This paper presents 
a new method based on image analysis and the detection of circular markers for non-contact displace-
ment measurements. The core principle involves detecting the centers of gravity of the circular markers 
formed on the sample under investigation. The centers of gravity are evaluated on each image created 
during the tensile test, representing nodal points. At these points, displacements are determined based 
on the non-contact extensometer. The deformations sought are a function of the displacements at each 
nodal point. These values were calculated based on several theoretical models, also used in the finite 
element analysis. The paper describes the computational procedure for determining the deformations 
based on the mentioned theoretical models. Subsequently, the total strain field is determined using linear 
interpolation of the displacement values at the individual nodal points. The results provided by each of 
the theoretical models were compared. 

Keywords: FFF, Object boundary detection, Infinitesimal strain tensor, Lagrangian strain tensor, Eulerian strain 
tensor 

 Introduction 

Effective use of materials in engineering practice 
requires thorough identification of their mechanical 
properties, as well as a deep understanding of their be-
havior under various loading modes. Reliable determi-
nation of these properties forms the foundation for 
designing safe and functional components, optimizing 
manufacturing processes, and predicting the service 
life of materials under real-world operating conditions. 

However, the accuracy and reliability of mechani-
cal testing results depend heavily on proper execution. 
This includes not only the selection of an appropriate 
testing method—typically based on relevant stan-
dards—but also correct sample preparation, adhe-
rence to testing conditions, and careful interpretation 
of the collected data. The choice of a specific type of 
mechanical test is determined by the nature of the 
required material data and by the demands for ac-
curacy, repeatability, and relevance of the measure-
ments with respect to the intended application of the 
material [1–9]. 

Mechanical testing of materials is primarily concer-
ned with two essential properties: strength and ducti-
lity. These characteristics are critical for assessing 

whether a material is suitable for a given engineering 
application. To achieve reliable, reproducible, and sta-
tistically valid results, it is crucial to follow clearly de-
fined and, in most cases, standardized testing proto-
cols. In engineering practice, internationally recogni-
zed standards are commonly used—such as ASTM 
D638 [10] for tensile testing of plastics, and ISO 6892-
1 [11] for metallic materials. These standards outline 
comprehensive testing procedures, covering aspects 
such as specimen geometry, test conditions, equip-
ment requirements, strain rate, data collection met-
hods, and evaluation criteria. Consistent application of 
these guidelines is essential to ensure the credibility 
and comparability of the measured data. 

To determine the fundamental mechanical prope-
rties of a material—such as strength and ductility—
the focus is typically placed on measuring the applied 
forces and the corresponding displacements of the 
specimen during loading. Using these measurements, 
values of stress and strain, which are the primary out-
puts of tensile tests, can be calculated based on funda-
mental equations from mechanics. Displacement me-
asurement can be carried out using a variety of techni-
cal approaches, including both contact and non- 



September 2025, Vol. 25, No. 4 MANUFACTURING TECHNOLOGY 
ISSN 1213–2489 

e-ISSN 2787–9402 

 

512 indexed on http://www.webofscience.com and http://www.scopus.com  

contact methods [12]. While contact extensometers 
have long been the industry standard, non-contact 
technologies have seen rapid advancement in recent 
years, largely due to progress in optics, computational 
devices, and image processing techniques. 

Modern non-contact extensometers enable accu-
rate, fast, and non-invasive tracking of deformation 
without physical interaction with the specimen. This 
eliminates potential interference between the measu-
ring device and the test sample, improving measure-
ment integrity. In a previous study, the authors intro-
duced a custom displacement measurement method 
based on computer vision principles [13]. This appro-
ach involved applying regions of interest—such as 
contrasting lines—onto the specimen’s surface. The 
centroid positions of these regions were tracked 
throughout the test, and changes in their location were 
used to determine local displacements. The results de-
monstrated that this non-contact method offers suffi-
cient accuracy, even when compared to digital image 
correlation (DIC), and represents a promising alterna-
tive to conventional contact-based techniques. During 
the review process of that study, reviewers highlighted 
the potential for extending the proposed method 
beyond the evaluation of displacements along the loa-
ding axis. They suggested that the methodology could 
be further enhanced by incorporating the analysis of 
strain components, including those occurring 
transverse to the loading direction.  

Building on these findings, the current work ex-
tends the method toward full-field strain determina-
tion. Specifically, the study investigates the strain field 
of additively manufactured thermoplastic specimens 
produced by Fused Filament Fabrication (FFF). The 
experiments were conducted using specimens fabri-
cated from polyethylene terephthalate glycol (PET-
G), a commonly used thermoplastic in additive manu-
facturing due to its good mechanical stability and op-
tical clarity [14-15]. Circular markers were printed di-
rectly onto the specimen surface during  fabrication by 
FFF technology using black PET-G filament, provid-
ing high-contrast features that enable two-dimen-
sional displacement tracking. Once the test begins, the 
circular markers are detected using object boundary 
detection algorithms, and the centroid position of 
each marker is tracked throughout the tensile test. The 
resulting trajectories are then used to calculate displa-
cement vectors, which form the basis for constructing 
various strain tensors—ranging from infinitesimal li-
near models to geometrically nonlinear formulations, 
such as the Lagrangian and Eulerian strain tensors 
[16–17]. Strain tensors are computed for each marker 
and for every frame, generating a detailed temporal 
map of local deformations. This analysis enables not 
only the observation of strain evolution over time but 
also a comparison of different mathematical approa-
ches and their influence on the interpretation of the 
resulting strain fields. The proposed approach  
thus aims contributes to the field of experimental  

mechanics by providing an accessible and accurate op-
tical method for strain field determination in additively 
manufactured thermoplastics. 

 Theoretical background 

Determination of the deformation field using com-
puter vision requires a sound understanding of both 
methods for displacement measurement methods, 
such as object boundary detection and the fundamen-
tal principles of continuum mechanics. This section 
provides the theoretical foundation necessary for the 
formulation of strain tensors, beginning with the defi-
nition of displacement, and culminating in strain mea-
sures for both small and large deformations. 

 Displacement gradient 

The displacement vector u of any point in a defor-
mable body can be described as: 

𝑢 = 𝑥 − 𝑋, (1) 

Where:  
x…The current (deformed) position of the point,  
X…Original (reference) position. 
By differentiating the displacement with respect to 

the components of X, we obtain the displacement gra-
dient, which in two dimensions takes the form: 

∇𝑢 = [

𝜕𝑢1

𝜕𝑋1

𝜕𝑢1

𝜕𝑋2

𝜕𝑢2

𝜕𝑋1

𝜕𝑢2

𝜕𝑋2

], (2) 

Where: 
ui, Xi…The components of the vectors u and X, 

respectively. 
In practical applications, particularly when working 

with experimental or numerically generated data, the 
displacement field is typically defined only at discrete 
points. In such cases, the partial derivatives in 
equation (2) are approximated using finite differences: 

∇𝑢∗ = [

∆𝑢1

∆𝑋1

∆𝑢1

∆𝑋2

∆𝑢2

∆𝑋1

∆𝑢2

∆𝑋2

], (3) 

 Deformation gradient tensor 

Under deformation, an infinitesimal element dX in 
the reference configuration is mapped to an element 
dx in the deformed configuration. This transforma-
tion is governed by the deformation gradient tensor F: 

𝑑𝑥 = 𝐹𝑑𝑋, (4) 

For planar problems, the deformation gradient can 
be expressed as: 

F = ∇x = I + ∇𝑢 = [

𝜕𝑥1

𝜕𝑋1

𝜕𝑥1

𝜕𝑋2

𝜕𝑥2

𝜕𝑋1

𝜕𝑥2

𝜕𝑋2

], (5) 

Where:  
I…The identity tensor, 
xi…The components of the current position 

vector x.  
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As with the displacement gradient, the derivatives 
in equation (5) can be approximated using finite diffe-
rences when dealing with discrete data. 

Provided that the deformation gradient tensor F is 
invertible, it can be decomposed into an orthogonal 
tensor R, representing rigid body motion, and a sym-
metric tensor U or V, representing pure stretch: 

𝐹 = 𝑅𝑈 = 𝑉𝑅, (6) 

The material deformation is characterized by the 
symmetric stretch tensors U and V, which serve as the 
basis for defining the right and left Cauchy–Green de-
formation tensors. These, in turn, are used to compute 
the Lagrangian and Eulerian strain tensors, which will 
be introduced in the subsequent subsections. 

 Infinitesimal strain tensor 

The infinitesimal strain tensor E is a symmetric 
second-order tensor that characterizes small defor-
mations of an elastic body relative to its undeformed, 
reference configuration. It is defined as the symmetric 

part of the displacement gradient ∇u, and is given by: 

𝐸 =
1

2
[(∇𝑢)𝑇 + ∇𝑢]. (7) 

This linearized strain measure provides an 
adequate approximation of the deformation state only 
under the assumption of small strains and small dis-
placements. In such cases, geometric nonlinearities are 
negligible, and the use of linear kinematic relations is 
justified. 

However, in cases involving large deformations, 
the use of infinitesimal strain tensor becomes ina-
dequate, as it fails to capture significant geometric 
changes. In these cases, finite strain theory is required, 
and the deformation must be characterized using non-
linear strain measures such as the Green–Lagrange 
strain tensor or the Euler–Almansi strain tensor. Fi-
nite strain theory incorporates higher-order terms and 
provides a more accurate representation of the defor-
mation kinematics in large-strain regimes. 

 Finite strain tensors 

In the presence of large deformations, it is ne-
cessary to employ nonlinear strain measures. These are 
formulated with respect to two primary configurati-
ons: the reference (material) configuration and the 
current (spatial) configuration, each associated with an 
appropriate deformation tensor. The corresponding 
deformation tensors associated with each configura-
tion will be introduced in the following sentences. 
 
2.4.1 Right Cauchy – Green deformation tensor 

The right Cauchy–Green deformation tensor C 
quantifies the stretch of material elements with respect 
to the reference configuration. It is defined as: 

𝐶 = 𝑈2 = 𝐹𝑇𝐹, (8) 

Where:  
F…The deformation gradient tensor, 

U…The right pure stretch tensor derived from the 
decomposition of F.  

The tensor C is symmetric and positive-definite, 
and it plays a central role in Lagrangian (material-
based) formulations of strain. 
 
2.4.2 Left Cauchy – Green deformation tensor 

In contrast to the right Cauchy–Green tensor, 
which describes deformation relative to the undefor-
med (reference) configuration, the left Cauchy–Green 
deformation tensor B characterizes deformation with 
respect to the current (deformed) configuration. It is 
defined as: 

𝐵 = 𝑉2 = 𝐹𝐹𝑇, (10) 

Where:  
F…The deformation gradient tensor,  
V…The left stretch tensor obtained through the 

decomposition of F (see Equation 6).  
The tensor B is symmetric and positive-definite, 

which describes local strains in the spatial (Eulerian) 
frame. It is frequently used in continuum mechanics 
formulations that are based on the deformed geo-
metry of the body. 
 
2.4.3 Lagrangian (Green–Lagrange) Strain Ten-
sor 

The Lagrangian strain tensor E*, also known as the 
Green–Lagrange strain tensor, is derived directly from 
the right Cauchy–Green tensor C: 

𝐸∗ =
1

2
(𝐶 − 𝐼), (9) 

Where:  
I…The second-order identity tensor.  
This strain measure captures the finite deformation 

of a material by accounting for both large displace-
ments and rotations. Unlike the infinitesimal strain 
tensor, Lagrangian strain tensor E* remains valid un-
der geometrically nonlinear conditions. In the limit of 
small strains and small rotations, E* converges to the 
linearized (infinitesimal) strain tensor E, ensuring con-
sistency with classical small-strain theory. 
 
2.4.4 Eulerian (Euler–Almansi) Strain Tensor 

From the left Cauchy–Green deformation tensor 

B, the Eulerian strain tensor e∗, also known as the Eu-
ler–Almansi strain tensor, is defined: 

𝑒∗ =
1

2
(𝐼 − 𝐵−1). (11) 

This tensor provides a measure of deformation re-
lative to the current configuration and, like the La-
grangian strain tensor, is capable of capturing large de-
formation states. 

This strain measure characterizes the deformation 
of a material element with respect to its current (de-
formed) configuration. Similar to the Green–Lagrange 
strain tensor E*, it is suitable for finite strain analysis, 
as it accounts for both large displacements and rotati-
ons. However, unlike E*, which is defined in the  
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reference (material) configuration, e∗ is formulated in 
the spatial (Eulerian) frame, making it particularly use-
ful in problems involving large deformations and evol-
ving geometries. 

 Component Form of the Strain Tensor 

In a two-dimensional plane, the components of a 

general strain tensor ε can be expressed in matrix form 
as: 

𝜀 =  [
𝜀11 𝜀12

𝜀21 𝜀22
], (12) 

Where:  

ε…Any of the strain tensors previously introdu-
ced, such as the infinitesimal strain tensor, Green–La-
grange strain tensor, or Euler–Almansi strain tensor.  

The diagonal components, ε₁₁ and ε₂₂, corre-
spond to the normal strains along the X- and Y-axis, 
respectively, indicating elongation or compression in 

those directions. The off-diagonal components, ε₁₂ 
and ε₂₁, represent shear strains in the XY and YX 
planes, respectively. 

According to the principle of shear strain recipro-
city (also known as the law of conjugate shear stres-
ses), the shear components are equal: 

𝜀12 = 𝜀21. (13) 

This symmetry implies that the strain tensor ε is 
symmetric. The symmetric nature of the strain tensor 
is essential in continuum mechanics, as it reflects phy-
sical consistency in the material’s deformation beha-
vior. 

 Experiment preparation 

Displacement measurements were conducted us-
ing a non-contact extensometer based on object 
boundary detection. The authors previously published 
a detailed study presenting this approach. However, 
that study primarily focused on creating markers 
(lines) on the surface of a flat test specimen. Subse-
quently, an image was captured, and object boundary 
detection algorithms were employed to identify the 
boundaries of the markers and calculate the positions 
of their centroids. This procedure was repeated for all 
captured images, enabling the tracking of individual 
marker centroids over time and the subsequent com-
putation of displacements.  

This methodology can also be applied using alter-
native marker shapes, such as circles. An advantage of 
circular markers, compared to line markers, is their 
ability to capture both longitudinal and transverse dis-
placements upon application, thereby enabling the de-
termination of the full strain field. The measurement 
procedure consists of two primary steps: 

• Recording the tensile test, 

• Processing the recorded data through cen-

troid detection. 

The tensile test was conducted using a modified 
dog-bone specimen fabricated via Fused Filament 
Fabrication (FFF) technology. The specimen’s geome-
try and dimensions are illustrated in Figure 2. The spe-
cimen was printed from white PET-G material [14–
15]. Circular markers were produced from the black 
PET-G to ensure reliable detection and maximum 
contrast against the white background. These markers 
were concentrated within the waist region of the spe-
cimen (see Figure 2). 

 

Fig. 1 Detection of the markers’ centers of gravity: (a) photo 
of observed area, (b) objects’ detection, (c) positions of the cen-

ters of gravity of all detected objects 
 

 

Fig. 2 Specimen dimensions 
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The tensile test was recorded using a Trust 4K Ul-
tra HD webcam [18] with a resolution of 3840×2160 
pixels. To ensure accurate and reliable displacement 
measurements, the fundamental imaging conditions 
were carefully maintained: the camera was positioned 
parallel to the specimen surface, manual focus was ap-
plied to avoid automatic adjustments, and the camera-
to-specimen distance was optimized for maximum 
clarity and contrast. 

Image acquisition was performed at a frequency of 
one frame every 0.5 seconds. The entire recording 
process was automated using a custom MATLAB 
script. An illustration of the experimental setup is pro-
vided in Figure X. 

 

Fig. 3 The measurement process: (a) start of the measure-
ment, (b) end of the measurement 

 
Following the image acquisition phase, the recor-

ded image sequence was processed to extract displa-
cement data. This stage consisted of three primary 
steps: 

• Detection of the centroids of circular mar-

kers, 

• Computation of marker displacements over 

time, 

• Construction of the deformation field. 

The centroid detection was carried out using 
MATLAB. The core methodology followed the ap-
proach described in study [13]. However, due to the 
use of circular rather than linear markers, the image 
processing pipeline required specific adjustments. 

The regionprops function in MATLAB was em-
ployed for marker analysis [19], with the properties 
Centroid, MajorAxisLength, and MinorAxisLength 
selected as output parameters. The Centroid parame-
ter directly provides the coordinates of the geometric 
center of each detected object. The remaining parame-
ters correspond to the lengths of the major and minor 
axes of the best-fit ellipse for each region, which are 
especially relevant when circular objects may appear 
slightly distorted due to perspective or image resolu-
tion. 

These measurements were further used to estimate 
the radius r of each circular marker by applying the 
relationship: 

𝑟 =
   𝐴 + 𝑎 

4
 (14) 

Where:  
A, a…The lengths of the major and minor axes, 

respectively.  
This information enabled consistency checks on 

marker size and contributed to robust tracking across 
frames. 

Fig. 4(a) shows the test specimen clamped in the 
jaws of the testing machine, with the green arrow in-
dicating the direction of loading. The circular markers 
were successfully detected, and their boundaries were 
highlighted in red, as illustrated in Fig. 4(b). Based on 
prior experience, reducing the detection area signifi-
cantly improves both the accuracy of centroid de-
tection and the speed of the image processing. The fi-
nal output of this procedure is the position of the cen-
troids of the individual circular markers (Fig. 4c). 

 

Fig. 4 Detection of circular marker centroids: (a) overview of 
the detection region, (b) visualization of detected circles in the 
cropped region, (c) position of centroids of all detected circles 
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 Results 

After completing the measurement, the evaluation 
of the recorded data can proceed. The output consists 
of a matrix representing the positions of individual 
centroids over time, i.e., across successive frames. A 
total of 130 frames were captured, resulting in 130 (X, 
Y) coordinates for each marker. However, only the 
first 105 frames were analyzed. This decision was 
based on the observation that the specimen was alre-
ady damaged. Since the material had failed, further 
measurements would no longer yield meaningful in-
formation for determining the deformation field. 

The authors constructed three strain tensors for 
each marker: 

• The infinitesimal strain tensor E, 

• The Lagrangian strain tensor E*, 

• The Eulerian strain tensor e∗. 

Figure 5 presents the temporal evolution of strain 
for the central marker, highlighted by the red rectangle 
in Figure 4(a). The corresponding graphs depict the 
individual components of the strain tensors, with sub-
script notation matching the tensor components de-
fined in Equation 12. 

Assuming small deformations within the elastic re-
gion of the material, all three formulations yield 
equivalent results, as can be observed in Figure 5 up 
to approximately 20 seconds. Additionally, the beha-
vior of the shear strain components demonstrates 
compliance with the law of complementary shear 
stresses. 

 

Fig. 5 The time-dependent behavior of the individual strain tensor components 
 
For the observed markers shown in Fig. 4b, inter-

polation allows the deformation fields to be visualized 
in different directions—along the loading direction, 
perpendicular to it, and also for the shear components 
of strain. The deformation fields in the loading di-
rection (component ε11) for the selected types of strain 

tensors (E, E*, e∗) are presented in Fig. 6.  
Figure 6 (left) displays the infinitesimal strain field 

(E11). The region of highest strains is located in the 
central part of the observed sample area. In this re-
gion, the calculated strain slightly exceeds a value of 
0.3. Under such conditions, this approach is no longer 
suitable for strain evaluation, as the maximum abso-
lute strain surpasses the 2% threshold, beyond which 
the deformation can no longer be considered small 
and the use of linear theory becomes invalid. 

The center image in Figure 6 shows the Lagrangian 

strain field (𝐸11
∗ ). Similar to the infinitesimal strain 

field, the highest strain values are again found in the 
central region of the sample. However, the strain va-
lues are even higher, exceeding 0.36. This increase is 
due to the fact that the infinitesimal approach neglects 
higher-order terms in the strain tensor components, 
which are included in the Lagrangian formulation. 

Figure 6 (right) presents the Eulerian strain field 

(𝑒11
∗ ). The area of maximum deformation is likewise 

located in the central region of the sample. However, 
in this case, the strain values are the lowest, with a ma-
ximum close to 0.21. This reduction is a result of the 
Eulerian formulation expressing deformation relative 
to the current (deformed) configuration, in contrast to 
the previous approaches, which refer to the original 
(undeformed) configuration. Since tensile loading 
causes elongation and thus an increase in the current 
length, the resulting strain values are reduced accor-
dingly.
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Fig. 6 Selected types of strain fields oriented in the loading direction: left – Infinitesimal strain field E, middle – Lagrangian strain 

field E*, right – Eulerian strain field e∗ 

 
Figure 7 shows the deformation fields oriented 

perpendicularly to the loading direction (ε22). As indi-
cated by the color legend below the deformation 

maps, the sample undergoes contraction in this di-
rection, which corresponds to negative strain values. 

 

Fig. 7 Selected types of strain fields oriented perpendicularly to the loading direction: left – Infinitesimal strain field E, middle – 

Lagrangian strain field E*, right – Eulerian strain field e∗ 
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Figure 7 (left) presents the infinitesimal strain field 

(E22). The region of greatest transverse contraction, 

reaching value -0.16, is located in the central part of 

the specimen, similar to the strain distribution orien-

ted in the loading direction. However, due to the high 

absolute strain value, the use of the infinitesimal ap-

proach is once again inappropriate, as the assumption 

of small deformations is violated. 

The center image displays the Lagrangian strain 

field (𝐸22
∗ ). The maximum contraction value, approxi-

mately -0.15, also occurs in the central region. In this 

case, the Lagrangian approach yields the lowest abso-

lute strain values. Nevertheless, these values remain al-

gebraically greater than those obtained using the infi-

nitesimal strain theory. 

The right image in Figure 7 shows the Eulerian 

strain field (𝑒22
∗ ). In this case, the maximum transverse 

contraction approaches -0.21. This formulation yields 
the highest absolute strain values, although they are al-
gebraically the smallest. This outcome is again related 
to the fact that the Eulerian approach evaluates defor-
mation relative to the current (deformed) configura-
tion. As the specimen continuously narrows in the 
transverse direction, the ratio of dimensional change 
to the decreasing actual size leads to a greater absolute 
value of strain. 

Figure 8 shows the shear strain fields (ε12=ε21). As 
indicated by the color legend beneath the deformation 
maps, both positive and negative shear strain values 
are present, corresponding to shearing in different di-
rections. However, in this case, the dominant shear 
deformations are positive.

 

Fig. 8 Selected types of shear strain fields: left – Infinitesimal strain field E, middle – Lagrangian strain field E*, right – Eulerian 

strain field e∗ 

 
Figure 8 (left) displays the infinitesimal strain field 

(E12). The region with the highest shear strain, appro-
ximately 0.07, is again located in the central part of the 
specimen. However, as the strain values exceed the 
range of small deformations, the use of this approach 
is considered inappropriate. 

The center image shows the Lagrangian strain field 

(𝐸12
∗ ). The maximum shear strain of about 0.1 is also 

concentrated in the specimen’s central region. It is evi-
dent from the figure that the Lagrangian approach 
yields the highest absolute shear strain values. 

The right image presents the Eulerian strain field 

(𝑒12
∗ ). Here, the maximum shear strain reaches appro-

ximately 0.04, representing the lowest absolute shear 
strain values among the three approaches. 

 Conclusion 

The aim of this paper was to present a method for 
determining the strain field of additively manufactured 
thermoplastics using computer vision techniques. The 
proposed approach enables non-contact measurement 
of displacements by detecting the centroids of circular 
markers applied to the test specimen. Since the flat 
specimen was fabricated via 3D printing using Fused 
Filament Fabrication technology, the markers were 
produced using the same method. The authors con-
ducted a tensile test recorded with a webcam. Recor-
ding the test enables reproducible evaluation of displa-
cements. Through image analysis, the positions of the 
centroids of all markers were successfully detected 
across every frame. 
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Based on the obtained centroid positions, displa-
cements were derived and used to construct selected 
strain tensors - infinitesimal, Lagrangian, and Eulerian 
strain tensors - for all markers. The authors provided 
a detailed description of the tensors for a selected mar-
ker. Comparison of results showed that the infinitesi-
mal strain tensor describes the specimen’s deforma-
tion state comparably to the Lagrangian and Eulerian 
strain tensors only for small displacements and strains. 
The infinitesimal strain tensor represents a simplified 
model that does not yield sufficiently accurate results 
for large displacements. This limitation is documented 
by progressively increasing discrepancies observed 
once the material’s linear elastic range is exceeded. 
Both the Lagrangian and Eulerian strain tensors 
adequately characterize large deformation states. 
However, these approaches differ in their reference 
geometry for evaluating material deformation. The La-
grangian strain tensor captures large deformations re-
lative to the specimen’s original (undeformed) geome-
try or monitored area, whereas the Eulerian strain ten-
sor assesses deformations relative to the current (de-
formed) geometry. This distinction leads to differing 
strain values, particularly under large deformations. 
The most pronounced differences between the appro-
aches were observed in transverse and shear strain 
components. 

The obtained strain fields for the individual tensor 
components demonstrated the proposed method’s 
capability to reliably and efficiently capture and 
describe the distribution of strains in a plane. This ap-
proach holds significant potential for applications in 
characterizing the mechanical behavior not only of 
3D-printed polymers but also of 3D-printed compo-
sites, conventionally manufactured composites, and 
metallic materials. 

Future research will focus on exploring more sui-
table methods for accurately describing the displace-
ment field, which is essential for the subsequent calcu-
lation of the strain field. Among the considered appro-
aches is the creation of a finite element mesh con-
necting the centroids of individual markers. Alternati-
vely, the structured marker arrays could be replaced by 
a points cloud, where discrete displacement values at 
these points could be interpolated using various met-
hods, such as polynomial surfaces, interpolation, or re-
gression techniques. These approaches have the po-
tential to improve the accuracy of differential calcula-
tions and, in some cases, allow for direct utilization of 
displacement field derivatives. This, in turn, may lead 
to higher precision and smoother strain distributions 
within the computational model. 
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