Manufacturing Technology 2011, 11(1):70-76 | DOI: 10.21062/ujep/x.2011/a/1213-2489/MT/11/1/70

Quality control of microstructure in recycled Al-Si cast alloys

Tillová Eva, Chalupová Mária, Hurtalová Lenka, Ďuriníková Emília
Department of Materials Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26, Žilina, Slovak Republic

Using recycled aluminium cast alloys is profitable in many aspects. Secondary aluminium produced from recycled metal requires only 2.8 kWh/kg of metal produced and creates only about 5 % as much CO2 as by primary production. Improved mechanical properties of recycled (secondary) hypoeutectic Al-Si cast alloys are strongly dependent upon the distribution and the shape of the silicon particles; the morphology, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements as Mg, Mn, Fe, or Cu allows many complex intermetallic phases to form, which make characterisation non-trivial. They are added deliberately to improve and to provide special material properties. Controlling the microstructure is, therefore, very important. A combination of different analytical techniques (light microscopy upon black-white etching; scanning electron microscopy (SEM) upon deep etching and energy dispersive X-ray analysis (EDX); quantitative phase analyse upon Image analyzer NIS Elements 3.0) were therefore been used for the quality control of microstructure in recycled AlSi9Cu3 cast alloy.

Keywords: recycled Al-Si cast alloys, microstructure, intermetallic phases

Published: December 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tillová E, Chalupová M, Hurtalová L, Ďuriníková E. Quality control of microstructure in recycled Al-Si cast alloys. Manufacturing Technology. 2011;11(1):70-76. doi: 10.21062/ujep/x.2011/a/1213-2489/MT/11/1/70.
Download citation

References

  1. DAS, S. K.; GREEN, J. A. S.; KAUFMAN G. J.; et al. Aluminum Recycling - An Integrated, Industrywide Approach. JOM, 2010, Vol. 62, No. 2, pp. 23-36. Go to original source...
  2. DAS, S. K.; GREEN J.. A. S.; Aluminium Industry and Climate. Change - Assessment and Responses. JOM, 2010, Vol. 62, No. 2, pp. 27-31. Go to original source...
  3. GESING, A.; WOLANSKI, R.. Recycling Light Metals from End of Life Vehicles. JOM, 2001, pp.21-23. Go to original source...
  4. LASA L.; RODRIGUEZ-IBABE J. M. 2004. Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment. Journal of Materials Science, 2004, 39, pp.1343-1355. Go to original source...
  5. TAYLOR, J. A. The effect of iron in Al-Si casting alloys. In. 35th Australian Foundry Institute National Conference, 2004. Adelaide, South Australia, pp.148-157.
  6. MICHNA, Š.; LUKÁČ, I. a kol.; Encyklopedie hliníku. 2005, Adin s.r.o. Prešov. in Czech, p. 700, ISBN 80-89041-88-4.
  7. TILLOVÁ, E.; CHALUPOVÁ, M.. Štruktúrna analýza zliatin Al-Si. 2009, EDIS Žilina, Žilina, in Slovak. p. 191, ISBN 978-80-554-0088-4
  8. MICHNA, Š.; VOJTECH, D.; MAJRICH, P.; Problematika kvality Al taveniny při liti automobilových diskú, Strojírenská technologie, 2008, roč. XIII, č. 3, p. 17-23.
  9. VAJSOVA, V.; MICHNA, Š.; Optimalizace homogenizačního žíháni slitiny AlZn5,5Mg2,5Cu1,5 In. Strojírenská technologie, 2010, roč. XV, č. 3 p. 6-11.
  10. SEIFEDDINE, S.; SVENSSON, I. L. The influence of Fe content and cooling rate on the microstructure and mechanical properties of a 380-die-casting alloy. In. Vikteffektiva lättmetallstukturer, Vilmer project - Rapport 11, 2007, p. 16, Jönköping University, Sweden.
  11. SHABESTARI S. G. The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering A, 383, 2004. pp. 289-298. Go to original source...
  12. SAMUEL, A. M.; SAMUEL, F. H. Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al-Si-Cu-Mg-Fe-Mn (380) aluminium die-casting alloy. Journal of Materials Science, 1995, 30, pp. 1698-1708. Go to original source...
  13. SAMUEL, A. M.; SAMUEL, F. H.; DOTY, H. W. Observations on the formation of β-AlFeSi phase in 319 type Al-Si alloys. Journal of Materials Science, 1996, 31, pp. 5529-5539. Go to original source...
  14. TILLOVÁ, E.; CHALUPOVÁ, M.; HURTALOVÁ, L. Evolution of the Fe-rich phases in Recycled AlSi9Cu3 Cast Alloy during Solution Treatment. Communications, 2010, 4, pp. 95-101. Go to original source...
  15. BOLIBRUCHOVÁ, D.; TILLOVÁ, E. Zlievarenské zliatiny Al-Si. 2005, EDIS Žilina, Žilina, in Slovak. p.180, ISBN 80-8070-485-6
  16. TILLOVÁ, E.; CHALUPOVÁ, M. Study of eutectic silicon morphollogy in Al-Si alloys. Transaction of the Universities of Košice, mimoriadne číslo-Alluminium '07, 2007, pp. 17-23.
  17. MARTINKOVIČ, M. Kvantitatívna analýza štruktúry materiálov. 2010. STU Bratislava, p. 109, in Slovak.
  18. BELAN, J. Influence of cooling rate on γ' morphology in cast Ni - base superalloy. Acta Metalurgica Slovaca, 2011, vol. 17, 1, pp. 38-44.
  19. VAŠKO, A. Analysis of the factors influencing microstructure and mechanical properties of austempered ductile iron. Communications, 4, 2009, pp. 43-47. Go to original source...
  20. DOBRZAŃSKI, L. A.; MANIARA, R.; KRUPIŃSKI, M.; SOKOLOWSKI, J. H. Microstructure and mechanical properties of AC AlSi9CuX alloys. Journal of Achievements in Materials and Manufacturing Engineering - JAMME, 2007, Vol. 24, 2, pp. 51-54.
  21. DOBRZAŃSKI, L. A.; MANIARA, R.; SOKOLOWSKI, J. H. The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics. Journal of Achievements in Materials and Manufacturing Engineering - JAMME, 2006, Vol. 17, 1-2, pp. 217-220.