Manufacturing Technology 2015, 15(3):295-303 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/3/295

Insights for the Selection of the Machining Parameters in the Turning of Difficult-To-Cut Coatings

Diego Carou1, Jan Řehoř1, Peter Monka2, Igor Vilček1, ©árka Houdková3
1 Regional Technological Institute, University of West Bohemia, 301 00 Pilsen, Czech Republic
2 Department of Machining Technology, University of West Bohemia, 301 00 Pilsen, Czech Republic
3 New Technologies Research Centre, University of West Bohemia, 301 00 Pilsen, Czech Republic

Usually, the coatings used in industrial applications require post-processing to reach their final shape. However, some of these coatings are difficult-to-cut, mainly because of their high hardness. The present study provides a revision of some experimental investigations on the turning of WC-Co, Stellite, and Fe-based and NiAl alloys. The materials are used for both coatings and sintered workpieces providing insights for conducting turning tests. For the success of the turning process, the selection of the machining parameters is a critical issue. Based on the reviewed investigations, the surface roughness is clearly influenced by the feed rate, expecting higher values than the ones predicted by the theoretical equations. Besides, the increase of both the cutting speed and feed rate leads to a high tool wear. Likewise, the increase of the feed rate leads to higher machining forces. In general, the influence of the cutting speed and depth of cut is less evident. Regarding the machining parameters, usually their maximum values are fixed at low levels: 100 m/min, 0.35 mm/rev and 0.3 mm, for the cutting speed, feed rate and depth of cut, respectively.

Keywords: difficult-to-cut coatings, machining force, machining parameters, surface quality, tool wear, turning

Published: June 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Carou D, Řehoř J, Monka P, Vilček I, Houdková ©. Insights for the Selection of the Machining Parameters in the Turning of Difficult-To-Cut Coatings. Manufacturing Technology. 2015;15(3):295-303. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/3/295.
Download citation

References

  1. PETRŮ, J., ZLÁMAL, T., ČEP, R., ČEPOVÁ, L. (2014). Technology of thermal spray coating machining. In: International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, Vol. 8, No. 2, pp. 450 - 454. WASET.
  2. PODGORNIK, B., VI®INTIN, J., WÄNSTRAND, O., LARSSON, M., HOGMARK, S., RONKAINEN, H., HOLMBERG, K. (2001). Tribological properties of plasma nitrided and hard coated AISI 4140 steel. In: Wear, Vol. 249, No. 3-4, pp. 254 - 259. Elsevier. Go to original source...
  3. KHANNA, A.S., KUMARI, S., KANUNGO, S., GASSER, A. (2009). Hard coatings based on thermal spray and laser cladding. In: International. Journal of Refractory Metals & Hard Materials, Vol. 27, No. 2, p.485 - 491. Elsevier. Go to original source...
  4. YANG, Q., MCKELLAR, R. (2015). Nanolayered CrAlTiN and multilayered CrAlTiN-AlTiN coatings for solid particle erosion protection. In: Tribology International, Vol. 83, pp. 12 - 20. Elsevier. Go to original source...
  5. BEWILOGUA, K., BRÄUER, G., DIETZ, A., GÄBLER, J., GOCH, G., KARPUSCHEWSKI, B., SZYSZKA, B. (2009). Surface technology for automotive engineering. In: CIRP Annals - Manufacturing Technology, Vol. 58, No. 2, pp. 608 - 627. Elsevier. Go to original source...
  6. SOHI, M.H., GHADAMI, F. (2010). Comparative tribological study of air plasma sprayed WC-12%Co coating versus conventional hard chromium electrodeposit. In: Tribology International, Vol. 43, No. 5-6, pp. 882 - 886. Elsevier.
  7. PAWLOWSKI, L. (2008). The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons Ltd., West Sussex (England). Go to original source...
  8. BOLELLI, G. et al. (2015). Tribology of HVOF-and HVAF-sprayed WC-10CoCr hardmetal coatings: a comparative assessment. In: Surface and Coatings Technology, Vol. 265, pp. 125 - 144. Elsevier. Go to original source...
  9. ESPALLARGAS, N., BERGET, J., GUILEMANY, J.M., BENEDETTI, A.V., SUEGAMA, PP. H. (2008). Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance. In: Surface and Coatings Technology, Vol. 202, No. 8, pp. 1450 - 1417. Elsevier. Go to original source...
  10. SIDHU, T.S., PRAKASH, S., AGRAWAL, R.D. (2006). Hot corrosion studies of HVOF NiCrBSi and Stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler. In: Surface and Coatings Technology, Vol. 201, No. 3-4, pp. 1602 - 1612. Elsevier. Go to original source...
  11. SHAO, H., LI, L., LIU, L.J., ZHANG, S.Z. (2013). Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. In: Journal of Manufacturing Processes, Vol. 15, No. 4, pp. 673 - 681. Elsevier. Go to original source...
  12. SURESH, R., BASAVARAJAPPA, S., GAITONDE, V.N., SAMUEL, G.L. (2012). Machinability investigations on hardened AISI 4340 steel using coated carbide insert. In: International Journal of Refractory Metals and Hard Materials, Vol. 33, pp. 75 - 86. Elsevier. Go to original source...
  13. NOVAK, M. (2011). Surface quality of hardened steels after grinding. In: Manufacturing Technology, Vol. 11, No. 11, pp. 55 - 59. Go to original source...
  14. BARTARYA, G., CHOUDHURY, S.K. (2012). State of the art in hard turning. In: International Journal of Machine Tools & Manufacture, Vol. 53, No. 1, pp. 1 - 14. Elsevier. Go to original source...
  15. JAWAHIR, I.S., BRINKSMEIER, E., M'SAOUBI, R., ASPINWALL, D.K., OUTEIRO, J.C., MEYER, D., UMBRELLO, D., JAYAL, A.D. (2011). Surface integrity in material removal processes: Recent advances. In: CIRP Annals - Manufacturing Technology, Vol. 60, No.2, pp. 603 - 626. Elsevier. Go to original source...
  16. TÖNSHOFF, H.K., ARENDT, C., AMOR, B.R. (2000). Cutting hardened steel. In: CIRP Annals - Manufacturing Technology, Vol. 49, No. 2, pp. 1 - 19. Elsevier. Go to original source...
  17. KUNDRÁK, J. (2011). Alternative machining procedures of hardened steels. In: Manufacturing Technology, Vol. 11, No. 11, pp. 32-39. Go to original source...
  18. SUN, S., BRANDT, M., DARGUSCH, M.S. (2010). Thermally enhanced machining of hard-to-machine materials-A review. In: International Journal of Machine Tools & Manufacture, Vol. 50, No. 8, pp. 663 - 680. Elsevier. Go to original source...
  19. LI, B. (2012). A review of tool wear estimation using theoretical analysis and numerical simulation technologies. In: International Journal of Refractory Metals & Hard Materials, Vol. 35, pp. 143 - 151. Elsevier. Go to original source...
  20. CHINCHANIKAR, S., CHOUDHURY, S.K. (2013). Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. In: Measurement, Vol. 46, No. 4, pp. 1572 - 1584. Elsevier. Go to original source...
  21. BERGER, L.M. (2015). Application of hardmetals as thermal spraying coatings. In: International Journal of Refractory Metals and Hard Materials, Vol. 49, pp. 350 - 364. Elsevier. Go to original source...
  22. LÓPEZ DE LACALLE, L.N., GUTIÉRREZ, A., LAMIKIZ, A., FERNANDES, M.H., SÁNCHEZ, J.A. (2001). Turning of thick thermal spray coatings. In: Journal of Thermal Spray Technology, Vol. 10, No. 2, pp. 249 - 254. Springer. Go to original source...
  23. KLIMENKO, S.A., MEL'NIICHUK, Y.A., VSTOVSKII, G.V. (2008). Interrelation between the structure parameters, mechanical properties of sprayed materials and the tool life in cutting them. In: Journal of Superhard Materials, Vol. 30, No. 2, pp. 115 - 121. Springer. Go to original source...
  24. CAROU, D., ŘEHOŘ, J., VILČEK, I., HOUDKOVÁ-©IMŮNKOVÁ, ©. (2015). An approach to the machining of hard coatings prepared by laser cladding and thermal spraying. In: Proceedings of Strojírenská Technologie - Plzeň 2015 Sborník Příspěvků, pp. 47 - 53. Západočeská univerzita v Plzni, Plzeň.
  25. RUBIO, E.M., VILLETA, M., SAÁ, A.J., CAROU, D. (2012). Analysis of main optimization techniques in predicting surface roughness in metal cutting processes. In: Applied Mechanics and Materials, Vol. 217-219, pp. 2171-2182. TTP. Go to original source...
  26. ANCIO, F., GÁMEZ, A.J., MARCOS, M. (2015). Factors influencing the generation of a machined surface. Application to turned pieces. In: Journal of Materials Processing Technology, Vol. 215, pp. 50 - 61. Elsevier. Go to original source...
  27. DAVID, S., KAREL, S. (2011). The impact of the cast-iron semi-finished product hardness on the surface quality after the machining process. In: Manufacuring Technology, Vol. 11, No. 11, pp. 66 - 70. Go to original source...
  28. MARKSBERRY, P.W., JAWAHIR, I.S. (2008). A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. In: International Journal of Machine Tools & Manufacture, Vol. 48, No. 7-8, pp. 878 - 886. Elsevier. Go to original source...
  29. BOOTHROYD, G., KNIGHT, W. (1989). Fundamentals of Machining and Machine Tools, Marcel Dekker Inc., New York.
  30. SHAW, M. (2004). Metal Cutting Principles, Oxford University press, Oxford. Go to original source...
  31. GRZESIK, W. (1996). A revised model for predicting surface roughness in turning. In: Wear, Vol. 194, No. 1-2, pp. 143-148. Elsevier. Go to original source...
  32. BENARDOS, P.G., VOSNIAKOS, G.C. (2003). Predicting surface roughness in machining: a review. In: International Journal of Machine Tools & Manufacture, Vol. 43, No. 8, pp. 833 - 844. Elsevier. Go to original source...
  33. ÖZEL, T., KARPAT, Y. (2005). Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. In: International Journal of Machine Tools & Manufacture, Vol. 45, No. 4-5, pp. 467 - 479. Elsevier. Go to original source...
  34. KINI, M.V., CHINCHOLKAR, A.M. (2010). Effect of machining parameters on surface roughness and material removal rate in finish turning of ±30º glass fibre reinforced polymer pipes. In: Materials & Design, Vol. 31, No. 7, pp. 3590 - 3598. Elsevier. Go to original source...
  35. LANDERS, R.G., ULSOY, A.G., MA, Y.H. (2004). A comparison of model-based machining force control approaches. In: International Journal of Machine Tools & Manufacture, Vol. 44, No. 7-8, pp. 733 - 748. Elsevier. Go to original source...
  36. BELMONTE, F., OLIVEIRA, F.J., SACRAMENTO, J., FERNANDES, A.J.S., SILVA, R.F. (2004). Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. In: Diamond and Related Materials, Vol. 13, No. 4-8, pp. 843 - 847. Elsevier. Go to original source...
  37. ALMEIDA, F.A., OLIVEIRA, F.J., SOUSA, M., FERNANDES, A.J.S., SACRAMENTO, J., SILVA, R.F. (2005). Machining hardmetal with CVD diamond direct coated ceramic tools: effect of tool edge geometry. In: Diamond and Related Materials, Vol. 14, No. 3-7, pp. 651 - 656. Elsevier. Go to original source...
  38. ZĘBALA, W., KOWALCZYK, R. (2015). Estimating the effect of cutting data on surface roughness and cutting force during WC-Co turning with PCD tool using Taguchi design and ANOVA analysis. In: International Journal of Advanced Manufacturing Technology, Vol. 77, No. 9-12, pp. 2241 - 2256. Springer. Go to original source...
  39. OZTURK, S. (2014). Machinability of Stellite-6 coatings with ceramic inserts and tungsten carbide tools. In: Arabian Journal For Science And Engineering, Vol. 39, No. 10, pp. 7375 - 7383. Springer. Go to original source...
  40. SHAO, H., LI, L., LIU, L.J., ZHANG, S.Z. (2013). Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. In: Journal of Manufacturing Processes, Vol. 15, No. 4, pp. 673 - 681. Elsevier. Go to original source...
  41. WANG, M., XU, B., ZHANG, J., DONG, S., WEI, S. (2013). Experimental observations on surface roughness, chip morphology, and tool wear behavior in machining Fe-based amorphous alloy overlay for remanufacture. In: International Journal of Advanced Manufacturing Technology, Vol. 67, No. 5-8, pp. 1537 - 1548. Springer. Go to original source...