Manufacturing Technology 2015, 15(5):893-899 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/5/893

Analysis of Selected Thermodynamic Derivative Properties of Natural Gas Pipeline Flow Model

Ján Rajzinger1, František Ridzoň1, Milan Malcho2, Jozef Jandačka2
1 Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava. Nám. Slobody 17, 812 31 Bratislava. Slovak Republic
2 Faculty of Mechanical Engineering, University of Žilina. Univerzitná 1, 010 01 Žilina. Slovak Republic

The thermodynamic derivatives based on fundamentals thermodynamic space and physical parameters of natural gas influences other variables of pipeline systems such as pressure, temperature, velocity, density, gas compressibility, etc. These variables are crucial for gas pipeline system knowledge and its accurate operation. Fundamental parameters are derived such as Joule-Thomson (J-T) coefficient, isothermal throttling coefficient and isentropic coefficient. They influence gas flow when during the expansion of natural gas in the pipeline, the gas cools down due to the J-T effect and due to the interaction between pipeline system and its surroundings to the conditions at which gas is saturated by water vapour (dew point), and gas is not able to keep excess humidity and its condensation and gas hydrate formation will occur. The article deals with analyses of selected thermodynamic derivatives in the range of chosen temperatures and pressures and also non-isothermal steady-state flow model for pipeline is presented.

Keywords: gas pipeline, natural gas, thermodynamic properties

Published: November 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Rajzinger J, Ridzoň F, Malcho M, Jandačka J. Analysis of Selected Thermodynamic Derivative Properties of Natural Gas Pipeline Flow Model. Manufacturing Technology. 2015;15(5):893-899. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/5/893.
Download citation

References

  1. SLOAN, E. D., KOH, C. A. (2008). Clathrate Hydrates of Natural Gases. CRC Press, New York. Go to original source...
  2. CARROLL, J. (2014). Natural Gas Hydrates. A Guide for Engineers. Elsevier, New York.
  3. RAJZINGER, J. (2012). Calculation of maximum water content in various natural gases by using modified Peng-Robinson equation of state. In: Communications, Vol. 14, No. 4A, pp. 29 - 35 Go to original source...
  4. BRESTOVIČ, T., JASMINSKÁ, N. (2013). Software support development for numerical solution of ANSYS CFX. In: Acta mechanica et automatica, Vol. 7, No.4, pp. 215 - 221 Go to original source...
  5. RAJZINGER, J. (2003). Sensitivity analysis of the physical and geometrical parameters and theit influence into gas pipeline network (Citlivostná analýza fyzikálnych a geometrických faktorov a ich vplyv na parametre plynárenskej siete). PhD. Report, Slovak University of Technology in Bratislava, Bratislava.
  6. ISO 12 213-2 (1997). Natural gas - Calculation of compression factor - Part 2: Calculation using molar-composition analysis. ISO, Geneva.
  7. SKOČILASOVÁ, B., SKOČILAS, J. (2013). Simulation of liquid flow in pipe. In: Manufacturing Technology Journal, Vol. 13, No. 4, pp. 542 - 547
  8. KIRILIN, V. A., SYCHEV, V. V., SHEINDLIN, A. E. (1976): Engineering Thermodynamics. MIR, Moscow.
  9. KIZEK, J., VRGA, A. (2013). Technical thermodynamics (Technická termodynamika). Technická univerzita v Košiciach, Košice.
  10. MATHER, A. E., POWERS, J. E., KATZ, L.D.: The Direct Determination of the Effect of Pressure on Enthalpy of a Mixture of Methane and Propane. In: AIChE Journal, January 1969, pp. 111 - 116 Go to original source...
  11. KRIZ, R. D. (2011). Thermodynamic Case Study: Gibbs' Thermodynamic Graphical Method. Envisioning total derivatives of scalar functions with two independent variables as raised surfaces and tangent planes. Virginia Tech., www.sv.vt.edu/classes/ESM4714/methods/Gibbs.html
  12. MAXWELL, J. C. (2001). Theory of Heat. Dover Publications, Inc., Mineola.
  13. ŽMINDÁK, M., MEŠKO, J., PELAGIĆ, Z., ZRAK, A. (2014). Finite element analysis of crack growth in pipelines. In: Manufacturing Technology Journal, Vol. 14, No. 1, pp. 116 - 122 Go to original source...
  14. (2015). Internal communication. EUSTREAM, a.s., Bratislava.
  15. (2015). Internal communication. Alberta Analytical Ltd, Frasier, Alberta, Canada.