Manufacturing Technology 2016, 16(6):1359-1363 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1359

Changes in Microstructure and Properties of Ni-Ti Alloy after Addition of Ternary Alloying Element

Pavel Salvetr, Andrea Školáková, Pavel Novák
University of Chemistry and Technology, Department of Metals and Corrosion Engineering, Technicka 5, 166 28 Prague 6, Czech Republic

In this work, the influence of alloying element in equimolar Ni-Ti alloy was investigated. Selected alloying elements (cobalt, chromium, niobium) were added into Ni-Ti46 wt. % powder mixture. The samples were prepared by self-propagating high-temperature synthesis at temperature of 1100 °C with the use of high heating rate (300 °C/min). The changes in microstructure, phase composition, temperature of reaction between Ni-Ti-X powders, phase transformation temperatures and mechanical properties were studied.

Keywords: Intermetallics, Ni-Ti-X alloy, shape memory, powder metallurgy, self-propagating high-temperature synthesis

Published: December 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Salvetr P, Školáková A, Novák P. Changes in Microstructure and Properties of Ni-Ti Alloy after Addition of Ternary Alloying Element. Manufacturing Technology. 2016;16(6):1359-1363. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1359.
Download citation

References

  1. MOHD JANI, J., M. LEARY, M., A. SUBIC, A., GIBSON, M.A. (2014). A review of shape memory alloy research, applications and opportunities, Materials & Design, Vol. 56, pp. 1078-1113. Go to original source...
  2. WU, T., WU, M.H. (2000). NiTiNb PLUGS FOR SEALING HIGH PRESSURE FUEL PASSAGES IN FUEL INJECTOR APPLICATIONS, in: International Conference on Shape Memory and Superelastic Technologies (SMST-2000), Pacific Grove, California, pp. 235.
  3. WU, M.H., SCHETKY, L.M. (2000). INDUSTRIAL APPLICATIONS FOR SHAPE MEMORY ALLOYS, in: International Conference on Shape Memory and Superelastic Technolgies, Pacific Grove, California, pp. 171-182.
  4. DUERIG, T., PELTON, A., STÖCKEL, D. (1999). An overview of nitinol medical applications, Materials Science and Engineering: A, Vol. 273-275, pp. 149-160. Go to original source...
  5. ELAHINIA, M.H., HASHEMI, M., TABESH, M., BHADURI, S.B. (2012). Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, Vol. 57, pp. 911-946. Go to original source...
  6. KUČERA, V., J. ČAPEK, MICHALCOVÁ, A., VOJTĚCH, D. (2014). Preparation and characterization of niti shape memory alloy preparedby powder metallurgy, Manufacturing Technology, Vol. 14, pp. 342-347. Go to original source...
  7. BISWAS, A., ROY, S.K. (2004). Comparison between the microstructural evolutions of two modes of SHS of NiAl: key to a common reaction mechanism, Acta Materialia, Vol. 52, pp. 257-270. Go to original source...
  8. WHITNEY, M., CORBIN, S.F., GORBET, R.B. (2008). Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis, Acta Materialia, Vol. 56, pp. 559-570. Go to original source...
  9. WHITNEY, M., CORBIN, S.F., GORBET, R.B. (2009). Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi, Intermetallics, Vol. 17, pp. 894-906. Go to original source...
  10. NOVÁK, P., VESELÝ, T., MAREK, I., DVOŘÁK, P., VOJTĚCH, V, SALVETR, P., KARLÍK, M., HAUŠILD, P., KOPEČEK, J. (2016). Effect of Particle Size of Titanium and Nickel on the Synthesis of NiTi by TE-SHS, Metallurgical and Materials Transactions B, Vol. 47, pp. 932-938. Go to original source...
  11. NOVÁK, P., MEJZLÍKOVÁ, L., MICHALCOVÁ, A., ČAPEK, J., BERAN, P., VOJTĚCH, D. (2013). Effect of SHS conditions on microstructure of NiTi shape memory alloy, Intermetallics, Vol. 42, pp. 85-91. Go to original source...
  12. NOVÁK, P., MORAVEC, H., SALVETR, P., PRŮŠA, F., DRAHOKOUPIL, J., KOPEČEK, J, KARLÍK, M., KUBATÍK, T.F. (2015). Preparation of nitinol by non-conventional powder metallurgy techniques, Materials Science and Technology, Vol. 31, pp. 1886-1893. Go to original source...
  13. NOVÁK, P., POKORNÝ, P., VOJTĚCH, V., KNAISLOVÁ, A., ŠKOLÁKOVÁ, A., ČAPEK, J., KARLÍK, M., KOPEČEK, J. (2015). Formation of Ni-Ti intermetallics during reactive sintering at 500-650 °C, Materials Chemistry and Physics, Vol. 155, pp. 113-121. Go to original source...
  14. SALVETR, P., NOVÁK, P., MORAVEC, H. (2015). Ni-Ti Alloys Produced by Powder Metallurgy, Manufacturing Technology, Vol. 15, pp. 689-694. Go to original source...
  15. JABUR, A.S., AL-HAIDARY, J.T., AL-HASANI, E.S. (2013). Characterization of Ni-Ti shape memory alloys prepared by powder metallurgy, Journal of Alloys and Compounds, Vol. 578, pp. 136-142. Go to original source...
  16. SINA, H., SURREDDI, K.B., IYENGAR, S. (2016). Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts, Journal of Alloys and Compounds, Vol. 661, pp. 294-305. Go to original source...
  17. ZHANG, L., ZHANG, Y.Q., JIANG, Y.H., ZHOU, R. (2015). Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering, Journal of Alloys and Compounds, Vol. 644, pp. 513-522. Go to original source...
  18. KRISTIANOVÁ, E., NOVÁK, P. (2015). Properties, production and applications of NiTi shape memory alloy, Manufacturing Technology, Vol. 15, pp. 995-998. Go to original source...
  19. SIEGERT, W., NEUKING, K., MERTMANN, M., EGGELER, G. (2002). Influence of Nb Content and Processing Conditions on Microstructure and Functional Properties of NiTiNb Shape-Memory Alloys, Materials Science Forum, Vol. 394-395, pp. 361-364. Go to original source...