Manufacturing Technology 2017, 17(2):135-141 | DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/2/135

Experimental Research of Dry Friction in "Alumina Ceramics - Quartz Glass" Pair

Ivan Abramov1, Pavol Božek2, Pavel Lekomtsev1, Yury Nikitin1, Aleksey Shchenyatsky1
1 Departament of Mechatronic Systems, Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, 426069 Izhevsk, Russia
2 Institute of Applied Informatics, Automation and Mathematics, Faculty of Materials Science and Technology, Slovak University of Technology, Hajdóczyho 1, 917 24 Trnava, Slovakia

Results of an experimental research of friction coefficient in "alumina ceramics - quartz glass" friction pair are presented. The research with pin on disc test configuration using SRV-III test machine was carried out at loads from 10 to 1000 N, constant sliding velocities 5 mm/s; ambient temperature 23°C and relative humidity 30%. The obtained results reveal that in general, friction coefficient for "alumina ceramics - quartz glass" pair decreases with the increase in normal load. It is shown that the obtained friction coefficients values at the normal force from 100 to 1000 N for the given experimental conditions can be used to pre-estimate the interference fits in "alumina ceramics - quartz glass" friction pairs.

Keywords: Friction coefficient, Friction force, Alumina ceramics, Quartz glass, Normal load

Published: April 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Abramov I, Božek P, Lekomtsev P, Nikitin Y, Shchenyatsky A. Experimental Research of Dry Friction in "Alumina Ceramics - Quartz Glass" Pair. Manufacturing Technology. 2017;17(2):135-141. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/2/135.
Download citation

References

  1. CZICHOS, H., HABIG, K. H. (2010). Tribologie-Handbuch. Tribometrie, Tribomaterialien, Tribotechnik. Springer Vieweg, Wiesbaden. Go to original source...
  2. STRAFFELINI, G. (2015). Friction and Wear Methodologies for Design and Control, Springer, Switzerland. Go to original source...
  3. SWAIN, M. V. (1979). Microfracture About Scratches in Brittle Solids / In: Proceedings of The Royal Society A (Proc Math Phys Eng Sci), Vol. 366, Issue 1727, pp. 575-597. Go to original source...
  4. ZUM GAHR, K. H. (1987). Microstructure and Wear of Materials, Tribology, series no 10, Elsevier, Amsterdam.
  5. PIVARČIOVÁ, E., BOŽEK, P. (2014). Industrial production surety factor increasing by a system of fingerprint verification. In ISEEE 2014 : proceedings. International conference on Information Science, Electronics and Electrical Engineering. April 26-28, 2014, Sapporo City, Hokkaido, Japan. Beijing: IEEE, 2014.
  6. POPOV, V. L. (2010). Kontaktmechanik und Reibung. Von der Nanotribologie bis zur Erdbebendynamik. Springer-Verlag Berlin Heidelberg. Go to original source...
  7. ABRAMOV, A., ABRAMOV, I., LEKOMTSEV, P. (2013). Analyzing the Accuracy of Conical Holes, Obtained by Method of Elastic-Plastic Deformation in Fluid Friction Mode. In: Bulletin of Kalashnikov ISTU, Vol. 60, No. 4, pp. 28 - 30. Kalashnikov Izhevsk State Technical University Press, Izhevsk.
  8. SCHINDOWSKI, E., SCHÜRZ, O. (1974). Statistische Qualitätskontrolle: Kontrollkarten und Stichprobenpläne. Verlag Technik, Berlin.
  9. KRAGELSKY, I. V. (1968). Friction and Wear. 2nd ed., revised and enlarged. Mashinostroenie, Moscow.
  10. Ceramic and Glass Materials: Structure, Properties and Processing. (2008). Editors: James F. Shackelford, Robert H. Doremus. Springer. New York.
  11. WACHTMAN, J. B., CANNON, W. R., MATTHEWSON, M. J. (2009). Mechanical Properties of Ceramics, 2nd Edition., John Wiley & Sons.
  12. FABIAN, M., STANOVÁ, E., FEDORKO, G., KMEŤ, S., FABIANOVÁ, J., KRAJŇÁK, J. (2016). Parametric CAD model of a double-lay six strand wire rope. In Manufacturing Technology. Volume 16, Issue 3, 2016, Pages 489-496. Go to original source...
  13. ABRAMOV, I. V., LEKOMTSEV, P. V., TREFILOV, N. A. (2015). Computer research of load-carrying capacity for tapered interference fit made of brittle nonmetallic parts. In: Intelligent Systems in Manufacturing, Vol. 26, No. 2, pp. 44 - 51. Kalashnikov Izhevsk State Technical University Press, Izhevsk.
  14. ABRAMOV, I., TURYGIN, Y., LEKOMTSEV, P., ROMANOV, A. (2016). Friction Coefficients in Tapered Interference Fits of Parts Made of Hard Brittle Materials. In: Intelligent Systems in Manufacturing, Vol. 31, No. 4, pp. 45 - 47. Kalashnikov Izhevsk State Technical University Press, Izhevsk. Go to original source...
  15. NOVAK, M. (2012). Surfaces with high precision of roughness after grinding. In Manufacturing Technology. Volume 12, Issue 1, 2012, Pages 66-70. Go to original source...
  16. PEŠKOVÁ, A., DEMEČ, P. (2016). Cost Modeling for ABC Failure of Machines In Manufacturing Technology. Volume 17, 2016, Pages 76-79. Go to original source...
  17. HOLESOVSKY, F., NAPRSTKOVA, N., NOVAK, M. (2012). GICS for grinding process optimization In Manufacturing Technology. Volume 12, Issue 1, 2012, Pages 22-26. Go to original source...
  18. KURYŁO, P., FRANKOVSKÝ, P., TERTEL, E., JANEK, J. (2015). The use of mathematical model of hardness spread in the research on the property of cast-iron molds. Metalurgija, 54(1), pp. 105-108.
  19. STRAKA, M., KAČMÁRY, P., ROSOVÁ, A., YAKIMOVICH, B., KORSHUNOV, A. (2016). Model of unique material flow in context with layout of manufacturing facilities. In Manufacturing Technology. Volume 16, Issue 4, 2016, Pages 814-820. Go to original source...
  20. BOŽEK, P., POKORNÝ, P. (2014). Analysis and evaluation of differences dimensional products of production system. In Applied Mechanics and Materials. Vol. 611 (2014), s. 339-345. ISSN 1660-9336. Go to original source...
  21. KORSHUNOV, A. (2007). The generalized model of valuation of constructive-technological complexity of a machine-building item. In Pollack Periodica, Volume 2, Issue 3, December 2007, Pages 135-146. Go to original source...
  22. DOMBRACHEV, A., YAKIMOVICH, B., KORSHUNOV, A., KRUTIKHIN, A. (2015). Effectiveness of the Lineika CAD system in assessing the precision of time standards. In Russian Engineering Research Volume 35, Issue 5, 18 May 2015, Pages 369-371. Go to original source...
  23. OSTERTAGOVÁ, E., FRANKOVSKÝ, P., OSTERTAG, O. (2016). Application of polynomial regression models for prediction of stress state in structural elements. Global Journal of Pure and Applied Mathematics, 12.4, pp. 3187-3199.