Manufacturing Technology 2018, 18(6):1015-1022 | DOI: 10.21062/ujep/217.2018/a/1213-2489/MT/18/6/1015

The Analysis of Accuracy of Machined Surfaces and Surfaces Roughness after 3axis and 5axis Milling

Marek Sadílek1, Lukáš Kousal1, Nataša Náprstková2, Tomáš Szotkowski1, Jiří Hajnyš1
1 Faculty of Mechanical Engineering, VSB-Technical University of Ostrava. 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
2 Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic

This article concentrates on the assessment of a 3D shape of parts of components. The 3D shape is divided into three distinctive shapes: a spherical canopy, a pyramid, and a concave transition between these shapes. Create these shape surfaces, various strategies of 3axis and 5axis milling are used. These strategies are described and then compared on a model in CAM MasterCAM software. The surface of the component is further measured with a roughness measuring device. The accuracy of the surface of the component is measured using a 3D measurement centre and then compared between surfaces with a different machining strategy. The last criterion for comparing machining strategies is to compare machining surfaces with a drawn tool over a pushed tool. Lastly, the best machining strategy is selected for the most suited surface of the component.

Keywords: 5axis milling, 3axis milling, Surface Roughness, Machining Strategy. CAM

Published: December 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sadílek M, Kousal L, Náprstková N, Szotkowski T, Hajnyš J. The Analysis of Accuracy of Machined Surfaces and Surfaces Roughness after 3axis and 5axis Milling. Manufacturing Technology. 2018;18(6):1015-1022. doi: 10.21062/ujep/217.2018/a/1213-2489/MT/18/6/1015.
Download citation

References

  1. BOUZAKIS, K. D., AICHOUH, P., EFSTATHIOU, K. (2003). Determination of the chip geometry, cutting force and roughness in free form surfaces finishing, with ball end tools. In: International Journal of Machine Tools and Manufacture. Vol. 43, No. 5, pp. 499-514. Elsevier Ltd. Go to original source...
  2. IKUA, B. W., TANAKA, H., OBATA, F., SAKAMOTO, S. (2001). Prediction of cutting forces and machining error in ball end milling of curved surfaces I - theoretical analysis. In: Journal of International Societies for Precision Engineering Nanotechnology. Vol. 25, No. 4, pp. 266-273, Elsevier Ltd. Go to original source...
  3. MIZUGAKI, Y., HAO, M., KIKKAWA, K. (2001). Geometric generating mechanism of machined surface by ball-nosed end milling. In: CIRP Annals - Manufacturing Technology, Vol. 50, No. 1, pp. 69-72. Elsevier Ltd. Go to original source...
  4. MIZUGAKI, Y., KIKKAWA, K., TERAI, H., HAO, M., SATA, T. (2003). Theoretical estimation of machined surface profile based on cutting edge movement and tool orientation in ball-nosed end milling. In: CIRP Annals - Manufacturing Technology. Vol. 52, No. 1, pp. 49-52. Elsevier Ltd. Go to original source...
  5. TOH, C. K. (2004). Surface topography analysis in high speed finish milling inclined hardened steel. In: Precision Engineering. Vol. 28, No. 4, pp. 386-398. Elsevier Ltd. Go to original source...
  6. CEPOVA, L., SOKOVA, D., MALOTOVA, S., GAPINSKI, B., CEP, R. (2016) Evaluation of Cutting Forces and Surface Roughness after Machining of Selected Materials. In: Manufactirung Tecnology, Vol 16., No. 1, pp.45-48. FSI UJEP, Czech Republic. Go to original source...
  7. PAGAC, M., MALOTOVA, S., SADALEK, M., PETRU, J., ZLAMAL, T., KRATOCHVIL, J. (2016). Influence of effective milling strategies on the residual stress. In: Proceedings of METAL 2016: 25th Anniversary international conference on metallurgy and materials. pp. 819-824.
  8. KIM, G. M., CHO, P. J., CHU, C. N. (2000). Cutting force prediction of sculptured surface ball-end milling using Z-map. In: International Journal of Machine Tools and Manufacture. Vol. 40, No. 2, pp. 277-291. Elsevier Ltd. Go to original source...
  9. IMANIA, B. M., SADEGHIB, M. H., ELBESTAWIA, M. A. (1998). An improved process simulation system for ball-end milling of sculptured surfaces. In: International Journal of Machine Tools and Manufacture. Vol. 38, No. 9, pp. 1089-1107. Elsevier Ltd. Go to original source...
  10. KIM, G. M., CHU, C. N. (2004). Mean cutting force prediction in ball-end milling using force map method. In: Journal of Materials Processing Technology. Vol. 146, No. 3, pp. 303-310. Elsevier Ltd. Go to original source...
  11. KIM, G. M., KIM, B. H., CHU, C. N. (2003). Estimation of cutter deflection and form error in ball-end milling processes. In: International Journal of Machine Tools and Manufacture. Vol. 43, No. 9, pp. 917-924. Elsevier Ltd. Go to original source...
  12. KITA, Y., FURUIKE, H., KAKINO, Y., NAKAGAWA, H., HIROGAKI, T. (2001). Basic study of ball end milling on hardened steel. In: Journal of Materials Processing Technology. Vol. 111, No. 1-3, pp. 240-243. Elsevier Ltd. Go to original source...
  13. BAĞCI, E., YÜNCÜOĞLU, U. E. (2017). The Effects of milling strategies on forces, material removal rate, tool deflection and surface errors for rough machining of complex surfaces. In: Strojniški vestnik - Journal of Mechanical Engineering. Vol. 63, No. 11, pp. 643-656. University of Ljubljana, Slovenia. Go to original source...
  14. FENG, H. Y., MENQ, C. H. (1996). A flexible ball-end milling system model for cutting force and machining error prediction. In: Journal of Manufacturing Science and Engineering. Vol. 118, No. 4, pp. 461-469. Columbia University, USA. Go to original source...
  15. LEE, C. M., KIM, S. W., LEE, Y. H., LEE, D. W. (2004). The optimal cutter orientation in ball end milling of cantilever-shaped thin plate. In: Journal of Materials Processing Technology. Vol.153, No. 1, pp. 900-906. Elsevier Ltd. Go to original source...
  16. VASILKO, K., MURCINKOVA, Z. (2017) The Proposal How to Make the Basic Machining Technologies - Turning, Milling, Planing - More Productive. In: Manufacturing Technology. Vol. 17 No2, pp. 261-267. FME UJEP, Czech Republic. Go to original source...
  17. SCHULZ, H., HOCK, St. High-speed milling of dies and moulds-cutting conditions and technology. In: Annals of the CIRP. Vol. 44, No. 1, 1995, pp. 35-38. Elsevier Ltd. Go to original source...
  18. NÁSTROJOVÁ OCEL W. NR. 1.2550. JKZ Bučovice a..s. [online]. [cit. 2018-06-07]. Available at http://www.jkz.cz/cs/produkty/nastrojove-oceli/pro-prace-za-studena/w-nr-12550/
  19. BALL NOSE AND MILLS. (2014) Fraisa: E-shop [online]. [cit. 2017-04-03]. Available at http://webshop.fraisa.ch/pdf/5286_E.pdf
  20. OBRÁBĚCÍ STROJE A TECHNOLOGIE: frézovací strategie při výrobě forem a zápustek. (2005) MM Průmyslové spektrum [online]. [cit. 2018-02-12]. Available at http://www.mmspektrum.com/clanek/frezovaci-strategie-pri-vyrobe-forem-a-zapustek.html
  21. HRICOVA, J., NAPRSTKOVA, N. (2015) Surface Roughness Optimization in Milling Aluminium Alloy by Using the Taguchi's Design of Experiment. In: Manufacturing Technology, Vol. 15, No. 4, pp. 541 546. FSI UJEP, Czech Republic. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.