Manufacturing Technology 2019, 19(5):759-766 | DOI: 10.21062/ujep/368.2019/a/1213-2489/MT/19/5/759

Enhancement the Corrosion Resistance of AISI 304 Stainless Steel by Nanocomposite Gelatin-Titanium Dioxide Coatings

Mohammed T. Hayajneh, Mohammed Almomani, Mohammad Al-Daraghmeh
Industrial Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan

AISI 304 stainless steel is widely used in many industries due to its good properties such as corrosion resistance and mechanical properties. However, this steel is usually exposed to a severe environment that leads to high corrosion and mechanical failure. This study aims to examine the corrosion behavior of spin-coated AISI 304 stainless steel in a simulated marine environment contains 3.5 wt. % NaCl, by preparing and characterizing nanocomposite coatings with different weight fractions of TiO 2 (0, 1, 2, 3 wt. %) dispersed in a gelatin matrix. Three spinning speed sets (Low (L): 250-1000, Medium (M): 500-2500 and High (H): 750-4000) rpm were chosen to inspect the effect of spinning speed on the characteristics of coatings. Nanoparticles dispersed in gelatin matrix were examined by XRD, SEM, and EDX. The results approved the formation of crack-free and homogeneous coatings without any noticeable defect. Moreover, the corrosion evaluations were measured by potentiodynamic polarization technique. The results showed that compared to uncoated AISI 304 steel, the corrosion behavior of TiO 2 nanoparticles dispersed in gelatin matrix considerably improved the uniform and localized corrosion. The corrosion test results showed that increasing the spinning speed to a certain limit has a positive impact on the corrosion characteristics.

Keywords: Titanium Dioxide, Gelatin, Corrosion resistance, AISI 304 stainless steel, Nanocomposite coating
Grants and funding:

This work was supported by a grant from the Dean-ship of Scientific Research at Jordan University of Science and Technology (JUST) with grant no. 39/2017.

Published: October 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hayajneh MT, Almomani M, Al-Daraghmeh M. Enhancement the Corrosion Resistance of AISI 304 Stainless Steel by Nanocomposite Gelatin-Titanium Dioxide Coatings. Manufacturing Technology. 2019;19(5):759-766. doi: 10.21062/ujep/368.2019/a/1213-2489/MT/19/5/759.
Download citation

References

  1. MAJUMDAR, J., MANNA, I. (1999). Laser surface alloying of aisi 304-stainless steel with molybdenum for improvement in pitting and erosion-corrosion resistance. In: Materials Science and Engineering A, Vol. 267, No. 1, pp.50-59. Go to original source...
  2. LUO, K., LU, J., ZHANG, Y., ZHOU, J., ZHANG, L., DAI, F., ZHANG, L., ZHONG, J., CUIA, C. (2011). Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel. In: Materials Science and Engineering A, Vol. 528, No. (13-14), pp. 4783-4788. Go to original source...
  3. LU, J., LUO, K., ZHANG, Y., SUN, G., GU, Y., ZHOU, J., REN, X., ZHANG, X., ZHANG, X., ZHANG, L., ZHANG, L., CHEN, K., CUI, C., JIANG, Y., FENG, A., ZHANG, L. (2010). Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. In: Acta Materialia, Vol. 58, pp. 5354-5362. Go to original source...
  4. SUN, G., ZHANG, Y., ZHANG, M., ZHOU, R., WANG, K., LIU, C., LUO. K. (2014). Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr-CrB2. In: Applied Surface Science, Vol. 295, pp. 94-107. Go to original source...
  5. POKORNÝ, Z., DOBRÁCKY, D., STUDENÝ, Z. (2018) Influence of Chemical Composition on Layer Properties of Barrel Steels. In: Manufacturing Technology. Vol. 18, N. 6, pp.1007-1010. Go to original source...
  6. APARICIO, M., JITANU, A., RODRIGUEZ, G., DEGNAH, A., AL-MARZOKI, K., MOSA, J., KLEIN, L.C. (2015). Corrosion Protection of AISI 304 Stainless Steel with Melting Gel Coatings. In: Electrochimica Acta, Vol. 202, pp. 325-332. Go to original source...
  7. ZATKALÍKOVÁ, V., MARKOVIČOVÁ, L., LIPTÁKOVÁ, T., VAŠKO, A. (2017). Corrosion behavior of AISI 304 stainless steel in aggressive chloride environment. In: Manufacturing Technology. 17, 4, 639-643. Go to original source...
  8. SCHNEIDER, J., MATSUOKA, M., TAKEUCHI, M., ZHANG, J., HORIUCHI, Y., ANPO, M., BAHNEMANN, D. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. In: Chemical Reviews, Vol.114, No. 19, pp. 9919-9986. Go to original source...
  9. KRISHNA, N., THINAHARAN, C., GEORGE, R., PARVATHAVARTHINI, N., MUDALI, U. (2015). Surface modification of type 304 stainless steel with duplex coatings for corrosion resistance in sea water environments. In: Surface Engineering, Vol. 3, No. 1, pp. 39-47. Go to original source...
  10. NAGHIBI, S., JAMSHIDI, A., TORABI, O., KAHRIZSANGI, R. (2013). application of taguchi method for characterization of corrosion behavior of TiO2 coating prepared by sol-gel dipping technique. In: Applied Ceramic Technology, Vol. 11, No. 5, pp. 901-910. Go to original source...
  11. CUI, L., QIN, P., HUANG, X., YIN, Z., ZENG, R., LI, S., HAN, E., WANG Z. (2017). Electrode-position of TiO2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. In: Surface and Coating Technology, Vol. 324, pp. 560-568. Go to original source...
  12. DZHURINSKIY, Z., GAO, Y., YEUNG, W., STRUMBAN, E., LESHCHINSKY, V., CHU, P., MATTHEWS, A., YEROKHIN, A., MAEV, R. (2015). Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation. In: Surface and Coatings Technology, Vol. 269, pp. 258-265. Go to original source...
  13. CURKOVIC, L., OTMACIC, H., SALOPEK, S., RENJO, M., SEGOTA, S. (2013). Enhancement of Corrosion Protection of AISI 304 Stainless Steel by Nanostructured Sol-Sel TiO2 Films. In: Corrosion Science, Vol. 77, pp. 167-184. Go to original source...
  14. FALLET, M., MAHDJOUB, H., GAUTIER, B., BAUER, J. (2001). Electrochemical behavior of ceramic sol-gel coatings on mild steel. In: Journal of Non-Crystalline Solids, Vol. 293-295, pp. 527-533. Go to original source...
  15. GHASEMI, A., SHAHRABI, T., OSKUIE, A., HASANNEJAD, H., SANJABI, S. (2010). Effect of heat treatment on corrosion properties of sol-gel titania-ceria nanocomposite coating. In: Journal of Alloys and Compounds, Vol. 504, pp. 273-242. Go to original source...
  16. TORKAMAN, R., DARVISHI, S., JOKAR, M., KHARAZIHA, M., KARBASI, M. (2017). Electrochemical and in vitro bioactivity of nanocomposite gelatin-forsterite coatings on AISI 316 L stainless steel. In: Progress in Organic Coatings, Vol. 103, pp. 40-47. Go to original source...
  17. OLAD, A., AZHAR, F., (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxyapatite-montmorillonite scaffold for bone tissue engineering. In: Ceramics International, Vol. 40, No. 7, pp. 10061-10072. Go to original source...
  18. DJAGNY, K., WANG, Z., XU, S. (2001). Gelatin: a valuable protein for food and pharmaceutical industries: review. In: Critical Reviews in Food Science and Nutrition, Vol. 4, No. 6, pp. 481-492. Go to original source...
  19. KARIM, A., BAHAT, I. (2008). Gelatin alternatives for the food industry: recent developments, challenges and prospects. In: Trends in Food Science and Technology, Vol. 19, No. 12, pp. 644-656. Go to original source...
  20. FRANTISKA, F., ESTHER, M., BEGONA, F. (2015). Electrophoretic deposition of gelatin/hydroxyapatite composite coatings onto a stainless steel substrate. In: Key Engineering Materials, Vol. 654, pp.195-199. Go to original source...
  21. ALMOMANI, M, HAYAJNEH, M, AL-DARAGHMEH, M. (2019). The corrosion behavior of AISI 304 stainless steel spin coated with ZrO2-gelatin nanolaminates. Materials Research Express. Volume 6, Number 9. pp. 0965c4 Go to original source...
  22. WANG, D., BIERWAGEN, G. (2009). Sol-gel coatings on metals for corrosion protection. In: Progress in Organic Coatings, Vol. 64, No. 4, pp. 327-338. Go to original source...
  23. ZABIHI, F., XIE, Y., GAO, S., ESLAMIAN, M. (2015). Morphology, conductivity and wetting characteristics of pedot: pss thin films deposited by spin and spray coating. In: Applied Surface Science, Vol. 338, pp. 163-177. Go to original source...
  24. COJOCARIU, A., CATTOËN, X., PARC, R., MAURIN, D., BLANC, C., DIEUDONNÉ, P., BANTIGNIES, J., MAN, M., BARTLETT, J. (2016). Evaporation-induced self-structuring of organised silica nanohybrid films through cooperative physical and chemical interactions. In: Physical Chemistry Chemical Physics, Vol. 18, No.11, pp. 7946-7955. Go to original source...
  25. CHIANG, C., TSENG, Z., WU, C. (2014). Planar heterojunction perovskite/pc71bm solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. In: Journal of Materials Chemistry A, Vol. 2, No. 38, pp.15897-15903. Go to original source...
  26. NOMANI, J., PRAMANIK, A., HILDITCH, T., LITTLEFAIR, G. (2015). Chip formation mechanism and machinability of wrought duplex stainless steel alloys. In: The International Journal of Advanced Manufacturing Technology, Vol. 80, No. (5-8), pp.1127-1135. Go to original source...
  27. LIM, C., LIM, C., GUPTA, M. (2003). Wear behaviour of SiCp-reinforced magnesium matrix composites. In: Wear, Vol. 255, No. (1-6), pp. 629-637. Go to original source...
  28. WILTSCHKA, O., BÖCKING, D., MILLER, L., BRENNER, R., SAHLGREN, C., LINDÉN, M. (2014). Preparation, characterization, and preliminary biocompatibility evaluation of particulate spin-coated mesoporous silica films. In: Microporous and Mesoporous Materials, Vol. 188, pp. 203-209. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.