Manufacturing Technology 2020, 20(1):45-48 | DOI: 10.21062/mft.2020.010

Chemical degradation of 3D printed products

Vaclav Kaspar, Jakub Rozlivka
Department of Technology and Automobile Transport, Mendel University in Brno, Zemedelska 1, 616 00 Brno. Czech Republic.

This template describes the behavior of products created with additive 3D printing technology. The tested material used to produce the samples was polyactide acid (PLA). PLA is one of the most favourite material for 3D printing. This polylactide acid contains a metal additive. The standard dog-bone shaped samples reinforced with internal ribs arranged in a grid with 20% of the internal volume of the rib-filled sample were tested for tensile strength. The samples were subjected to different types of chemical degradation prior to the test. As a degradation agent, there was used an organic solvents. The result of the research is the effect of the degradation factor on the mechan-ical properties of these samples and possible use in practice, specifically in technology.

Keywords: 3D printig, Tensile testing, Chemical degradation, Polylactide acide, Metal additive
Grants and funding:

Specific Research, project IP 18/2019: Use of inorganic corrosion coatings for heterogeneous weldments protection; financed by IGA AF MENDELU.

Prepublished online: July 31, 2020; Published: August 6, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kaspar V, Rozlivka J. Chemical degradation of 3D printed products. Manufacturing Technology. 2020;20(1):45-48. doi: 10.21062/mft.2020.010.
Download citation

References

  1. BEHALEK, L. (2016). Polymery. Verze knihy 17. [Online]. Available at: https://publi.cz/books/180/Cover.html. [2018-04-08].
  2. BELLINI, A., GUCERI, S. (2003). Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 9(4), 252-264 Go to original source...
  3. MULLER, B. (2012). Additive Manufacturing Technologies - Rapid Prototyping to Direct Digital Manufactur-ing. Assembly Automation, 32(2). Go to original source...
  4. NICHOLSON, J.W. (2006). The chemistry of polymers. 3rd ed., UK: RSC Pub, Cambridge Go to original source...
  5. PRUSA, J., PRUSA, M. (2014). Základy 3D tisku [Online]. Available at: https://www.prusa3d.cz/kniha-zaklady-3d-tisku-josefa-prusi/. [2018-02-09].
  6. ROBERTSON, W.(1984) Lubrication in Practice. Macmillan Press Ltd., Houndmills, Basingstoke.
  7. SIMACEK P., KUBICKA D., POSPISIL M., SEBOR G. (2012) Paliva 4, 28. VSCHT, Praha Go to original source...
  8. ÚNVMZ. (2012). Plasty - Stanovení tahových vlastností - Část 1: Obecné principy. ČSN EN ISO 527-1. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha
  9. STANEK M., MANAS M., OVSIK M. (2019). Polymer Flow Influenced by Mold Cavity Surface Roughness, Manufacturing technology, Volume 19, Issue 2, p. 327-331. Go to original source...
  10. DVORAK K., ZARYBNICKA L., DVORAKOVA J., (2019). Quality Parameters of 3D Print Products by the DMLS Method, Manufacturing technology, Volume 19, Issue 2, p. 209-219. Go to original source...
  11. HANZL P., ZETKOVA I., DAŇA M., (2019) Uniaxial Tensile Load of Lattice Structures Produced by Metal Additive Manufacturing, Manufacturing technology. Volume 19, Issue 2, p. 228-231 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.