Manufacturing Technology 2020, 20(5):547-553

Manufacturing of Vortex Granulators: Simulation of the Vortex Fluidized Bed Functioning under the Disperse Phase Interaction in the Constrained Motion

Artem Artyukhov1, Jan Krmela2,3, Vladimíra Krmelová4
1 Faculty of Technical Systems and Energy Efficient Technologies, Sumy State University. Rymskogo Korsakova st.,2, 40007, Sumy. Ukraine
2 Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín. I. Krasku 491/30, 02001 Púchov. Slovak Republic
3 Faculty of Transport Engineering, University of Pardubice. Studentská 95, 532 10 Pardubice. Czech Republic
4Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín. I. Krasku 491/30, 02001 Púchov. Slovak Republic. E-mail: vladimira.krmelova@tnuni.sk

The work presents the computer simulation results describing the motion of the interacting particles in a vortex fluidized bed (the constrained motion). The data obtained reveal the peculiar features of the polydisperse system motion in the apparatuses with the variable cross-section of the workspace. The empirical coefficient determining the residence time of a particle in the vortex fluidized bed was calculated. An algorithm of the residence time cal-culations for a particle in the vortex fluidized bed under the constrained motion is developed. The results of com-puter simulation were a part of engineering (technological and constructive) algorithm of calculation for the fu-ture manufacturing of granulator?s industrial sample.

Keywords: Computer Modeling, Vortex Granulator, Constrained Motion, Optimization
Grants and funding:

The Cultural and Educational Grant Agency of the Slovak Republic (KEGA), project No. KEGA 002TnUAD-4/2019 and by the Ministry of Science and Education of Ukraine under the project „Small-scale energy-saving modules with the use of multifunctional devices with intensive hydro-dynamics for the production, modification and encapsulation of granules“, project No. 0119U100834.

Received: May 1, 2020; Revised: September 24, 2020; Accepted: September 25, 2020; Prepublished online: November 23, 2020; Published: December 14, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Artyukhov A, Krmela J, Krmelová V. Manufacturing of Vortex Granulators: Simulation of the Vortex Fluidized Bed Functioning under the Disperse Phase Interaction in the Constrained Motion. Manufacturing Technology. 2020;20(5):547-553.
Download citation

References

  1. SINAISKI, E. G. (2010). Hydromechanics: theory and fundamentals. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA.
  2. GIDASPOW, D. (1994). Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications. Academic Press, San Diego.
  3. HILTUNEN, K., JASBERG, A., KALLIO, S., KAREMA, H., KATAJA, M., KOPONEN, A., MANNINEN, M., TAIVASSALO, V. (2009). Multiphase Flow Dynamics: Theory and Numerics. VTT Tech-nical Research Centre of Finland, Edita Prima Oy.
  4. MARCHISIO, D. L., FOX, R. O. (2013). Computational Models for Polydisperse Particulate and Multiphase Sys-tems. Cambridge Series in Chemical Engineering. Cambridge University Press. Go to original source...
  5. CROWE, C. (2006). Multiphase flow handbook. Taylor & Francis Group, Boca Raton.
  6. SOUKUP, J., KRMELA, J., KRMELOVÁ, V., SKOČILASOVÁ, B., ARTYUKHOV, A. (2019). FEM Model of Structure for Weightlifting in CrossFit in Terms of Material Parameters. In: Manufacturing Tech-nology. Vol. 19, No. 2, pp. 321 - 326. ISSN 1213-2489. DOI: 10.21062/ujep/290.2019/a/1213-2489/MT/19/2/321 Go to original source...
  7. SMETANKA, L., ©«ASTNIAK, P. (2017). Analysis of Contact Stresses of Theoretical and Worn Profile by Using Computer Simulation. In: Manufacturing Technology. Vol. 17, No. 4, pp. 580 - 585. ISSN 1213-2489. DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/4/580 Go to original source...
  8. KHANALI M., RAFIEE, S., JAFARI, A., BANISHARIF, A. (2012). Study of Residence Time Distribu-tion of Rough Rice in a Plug Flow Fluid Bed Dryer. In: International Journal of Advanced Science and Technolo-gy, Vol. 48, pp. 103 - 114.
  9. GOLDSCHMIDT, M. J. V., WEIJERS, G. G. C., BOEREFIJN, R., KUIPERS, J. A. M. (2003). Discrete element modelling of fluidised bed spray granulation. In: Powder Technology, Vol. 138, pp. 39 - 45. Go to original source...
  10. ARTYUKHOV, A. E., SKLABINSKYI, V. I. (2017). Investigation of the temperature field of coolant in the installations for obtaining 3D nanostructured porous surface layer on the granules of ammonium ni-trate. In: Journal of Nano- and Electronic Physics, Vol. 9 No. 1, pp. 01015-1-01015-4. https://doi.org/10.21272/jnep.9(1).01015. Go to original source...
  11. ARTYUKHOV, A. E., SKLABINSKYI, V. I. (2015). Hydrodynamics of gas flow in small-sized vortex granulators in the production of nitrogen fertilizers. In: Chemistry & Chemical Technology, Vol. 9, No. 3, pp. 337 - 342. Go to original source...
  12. ARTYUKHOV, A. E., SKLABINSKYI, V. I. (2015). Theoretical analysis of granules movement hydrodynamics in the vortex granulators of ammonium nitrate and carbamide production. In: Chemistry & chemical technology, Vol. 9, No. 2, pp. 175 - 180. Go to original source...
  13. ARTYUKHOV, A. E, OBODIAK, V. K, BOIKO, P. G., ROSSI, P. C. (2017). Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices. In: CEUR Work-shop Proceedings, Vol. 1844, pp. 33 - 47.
  14. ARTYUKHOV, A. E. (2017). Internal recycled particles circulation in vortex granulator. In: Chemical and Petroleum Engineering, Vol. 53, No.7-8, pp. 423 - 429. Go to original source...
  15. ARTYUKHOV, A., IVANIIA, A., ARTYUKHOVA, N., GABRUSENOKS, J. (2017). Multilayer modi-fied NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the struc-ture of macro- and mezopores. In: Proc. IEEE International Young Scientists Forum on Applied Physics and En-gineering (YSF-2017), pp. 315-318. Go to original source...
  16. Certificate of copyright registration No. 67472 UA (2016). Computer program "Classification in vortex flow".

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.