Manufacturing Technology 2021, 21(2):214-222 | DOI: 10.21062/mft.2021.033

Force and Temperature Conditions of Face Milling with Varying Chip Quotient as a Function of Angle of Rotation

János Kundrák1, Zoltán Pálmai1, Bernhard Karpuschewski2, Csaba Felhő1, Tamás Makkai1, Dmytro Borysenko3
1 Institute of Manufacturing Science, University of Miskolc. Egyetemváros, 3515 Miskolc. Hungary
2 Leibniz-Institut für Werkstofforientierte Technologien - IWT. 3 Badgartener Str., 28359 Bremen. Germany
3 Institute of Manufacturing Technology and Quality Management, Otto von Guericke University Magdeburg, 2 Universitätsplatz, 39106 Magdeburg, Germany

Increasing the efficiency of cutting operations while fulfilling the required (expected) quality of the parts constantly requires a thorough knowledge of the chip removal process. This is especially justi-fied in the case of deviations from the usual (traditional) technological conditions or cutting data, both in terms of cutting theory and technique. This paper summarizes some of the results of a study of cutting force and cutting temperature in face milling. The technological analysis of face milling was performed by FEM simulation, which was compared and validated by measuring the cutting force. The chip removal of C45 rolled steel as a function of tool rotation was studied with two differ-ent depths of cut ap and feed rate fz so that at a constant nominal Ac cross section the ratios ap/fz were 0.1 and 10. The effect of the change of the cross-section and chip ratio is shown.

Keywords: Face Milling, Cutting Force, Cutting Temperature

Received: December 9, 2020; Revised: February 15, 2021; Accepted: February 19, 2021; Prepublished online: March 22, 2021; Published: April 6, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kundrák J, Pálmai Z, Karpuschewski B, Felhő C, Makkai T, Borysenko D. Force and Temperature Conditions of Face Milling with Varying Chip Quotient as a Function of Angle of Rotation. Manufacturing Technology. 2021;21(2):214-222. doi: 10.21062/mft.2021.033.
Download citation

References

  1. SALOMON, C. (1929). Schnittdruck- und Schneidtemperatur Erscheinungen an der Werkzeugschneide. In: Die Werkzeugmaschine. Zeitschrift für Metallbearbeitung und Maschinenbau, Vol. 33. No. 23., pp. 477-496.
  2. SHALABY, M.A., EL HAKIM, M.A., VELDHUIS, S.C., DOSBAEVA, G.K. (2017). An investigation into the behavior of the cutting forces in precision turning. In: The International Journal of Advanced Manufacturing Technology, Vol. 90, pp. 1605-1615. Go to original source...
  3. GENG, G., ZHANG, L., XIAO, M., DONG, X., CHEN, K. (2020). Finite element analysis and parameter optimization selection of high speed milling GH4169. In: Manufacturing Technology, Vol. 20, No. 3, pp. 300-306. Go to original source...
  4. FAN, Y., ZHENG, M., ZHANG, D., YANG, S., CHENG, M. (2014). Static and dynamic characteristic of cutting force when high-efficiency cutting Ti-6Al-4V. In: Key Engineering Materials, Vols. 589-590, pp. 122-128. Go to original source...
  5. KECIK, K., RUSINEK, R., WARMINSKI, J. (2011). Stability lobes analysis of nickel superalloys milling. In: International Journal of Bifurcation and Chaos, Vol. 21, No. 10, pp. 2943-2954. Go to original source...
  6. HUAN, H., XU, J., SU, J., FU, Y., GE, Y. (2014). Experimental study on milling of titanium matrix com-posites. In: Key Engineering Materials, Vols. 589-590, pp. 281-286. Go to original source...
  7. KLOCKE, F., ADAMS, O., AUERBACH, T., GIERLINGS, S., KAMPS, S., REKERS, S., VESELOVAC, D., ECKSTEIN, M., KIRCHHEIM, A., BLATTNER, M., THIEL, R., KOHLER, D. (2015). New con-cepts of force measurement systems for specific machining processes in aeronautic industry. In: CIRP Journal of Manufacturing Science and Technology, Vol. 9, pp. 31-38. Go to original source...
  8. HENERICHS, M., VOß, R., KUSTER, F., WEGENER, K. (2015). Machining of carbon fiber reinforced plastics: influence of tool geometry and fiber orientation on the machining forces. In: CIRP Journal of Manu-facturing Science and Technology, Vol. 9, pp. 136-145. Go to original source...
  9. AHEARNE, E., BARON, S. (2017). Fundamental mechanisms in orthogonal cutting of medical grade co-balt chromium alloy (ASTM F75). In: CIRP Journal of Manufacturing Science and Technology, Vol. 19, pp. 1-6. Go to original source...
  10. KARAGUZEL, U., BAKKAL, M., BUDAK, E. (2017). Mechanical and thermal modeling of orthogonal turn-milling operation, In: Procedia CIRP, Vol. 58, pp. 287-292. Go to original source...
  11. NIEDERWESTBERG, D., DENKENA, B. (2014). Simulation of thermal and mechanical workpiece load. In: CIRP Journal of Manufacturing Science and Technology, Vol. 7, pp. 315-323. Go to original source...
  12. CUI, X., ZHAO, B., JIAO, F., ZHENG, J. (2016). Chip formation and its effects on cutting force, tool temperature, tool stress, and cutting edge wear in high- and ultra-high-speed milling. In: The International Journal of Advanced Manufacturing Technology, Vol. 83, pp. 55-65. Go to original source...
  13. FERNÁNDEZ-ABIA, A.I., BARREIRO, J., LÓPEZ DE LACALLE, L.N., MARTÍNEZ-PELLITERO, S. (2012). Behavior of austenitic stainless steels at high speed turning using specific force coefficients, In: The International Journal of Advanced Manufacturing Technology, Vol. 62, pp. 505-515. Go to original source...
  14. GE, G., BAOHAI, W., DINGHUA, Z., MING, L. (2013). Mechanistic identification of cutting force coef-ficients in bull-nose milling process, In: Chinese Journal of Aeronautics, Vol. 26, No. 3, pp. 823-830. Go to original source...
  15. AYDIN, M., KÖKLÜ, U. (2017). Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. In: The International Journal of Advanced Manufacturing Technology, Vol. 92, pp. 1465-1480. Go to original source...
  16. ZHENG, H.Q., LI, X.P., WONG, Y.S., NEE, A.Y.C. (1999). Theoretical modelling and simulation of cut-ting forces in face milling with cutter runout. In: International Journal of Machine Tools & Manufacture, Vol. 39, pp. 2003-2018. Go to original source...
  17. KOLAR, P., SULITKA, M., FOJTŮ, P., FALTA, J., ©INDLER, J. (2016). Cutting force modelling with a combined influence of tool wear and tool geometry. In: Manufacturing Technology, Vol. 16, No. 3, pp. 524-531. Go to original source...
  18. RUBEO, M.A., SCHMITZ, T.L. (2016). Milling Force Modeling: A comparison of two approaches. In: Pro-cedia Manufacturing, Vol. 5, pp. 90-105. Go to original source...
  19. KARPUSCHEWSKI, B., KUNDRÁK, J., EMMER, T., BORYSENKO, D. (2017). A new strategy in face milling - inverse cutting technology. In: Solid State Phenomena, Vol. 261, pp. 331-338. Go to original source...
  20. KUNDRÁK, J., MARKOPOULOS, A.P., MAKKAI, T., KARKALOS, N.E. (2019). Effect of edge geometry on cutting forces in face milling with different feed rates. In: Manufacturing Technology, Vol. 19, No. 6, pp. 984-992. Go to original source...
  21. KUNDRÁK, J., MARKOPOULOS, A.P., MAKKAI, T., DESZPOTH, I., NAGY, A. (2018). Analysis of the effect of feed on chip size ratio and cutting forces in face milling for various cutting speeds. In: Manufacturing Technology, Vol. 18, No. 3, pp. 431-438. Go to original source...
  22. KUNDRÁK, J., GYÁNI, K., FELHŐ, C., DESZPOTH, I. (2017). The effect of the shape of chip cross section on cutting force and roughness when increasing feed in face milling. In: Manufacturing Technology, Vol. 17, No. 3, pp. 335-342. Go to original source...
  23. KORKUT, I., DONERTAS, M.A. (2007). The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling. In: Materials & Design, Vol. 28, pp. 308-312. Go to original source...
  24. KARPUSCHEWSKI, B., BATT, S. (2007). Improvement of dynamic properties in milling by integrated stepped cutting, In: CIRP Annals, Vol. 56, No. 1, pp. 85-88. Go to original source...
  25. BORYSENKO, D., KARPUSCHEWSKI, B., WELZEL, F., KUNDRÁK, J., FELHŐ, C. (2019). Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling, In: CIRP Journal of Manufacturing Science and Technology, Vol. 24, pp. 1-5. Go to original source...
  26. RIEF, M., KARPUSCHEWSKI, B., KALHÖFER, E. (2017). Evaluation and modeling of the energy demand during machining, In: CIRP Journal of Manufacturing Science and Technology, Vol. 19, pp. 62-71. Go to original source...
  27. KUNDRÁK, J., KARPUSCHEWSKI, B., PÁLMAI, Z., FELHŐ, C., MAKKAI, T., BORYSENKO, D. (2021). The energetic characteristics of milling with changing cross-section in the definition of specific cutting force by FEM method, In: CIRP Journal of Manufacturing Science and Technology, Vol. 32, pp. 61-69. Go to original source...
  28. PÁLMAI, Z. (2006). Chaotic phenomena induced by the fast plastic deformation of metals during cutting, In: Journal of Applied Mechanics, Vol. 43, pp. 240-245. Go to original source...
  29. SHI, H-M., WANG, J-L. (1995). A model for non-free-cutting. In: International Journal of Machine Tools & Manufacture, Vol. 35, No. 11, pp. 1507-1522. Go to original source...
  30. PÁLMAI, Z., CSERNÁK, G. (2012). Effect of built-of edge-induced oscillations on chip formation during turning. In: Journal of Sound and Vibration, Vol. 332, No. 8, pp. 2057-2069. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.