Manufacturing Technology 2021, 21(3):315-329 | DOI: 10.21062/mft.2021.046

Determining Optimum Shear Strength of Friction Stir Spot Welding Parameters of AA1050/C10100 Joints

Ali Habibizadeh ORCID..., Mohammad Honarpisheh ORCID..., Sa’id Golabi ORCID...
Faculty of Mechanical Engineering, University of Kashan. Qotb-e Ravandi Blvd, Kashan 8731753153. Isfahan.

Friction stir spot welding (FSSW) is an alternative joining process mostly suitable for joining dissimilar sheets or when conventional spot welding is not applicable. In this paper, lap joint of 2 mm thickness AA1050 aluminum sheets and C10100 copper sheets using different process parameters and fixed tool geometry were investigated. Experimental plan is designed according to response surface methodology (RSM) where: tool rotation speed, plunge depth and dwell time vary between 500 and 2500 rpm, 2.1 and 3.7 mm and 0 and 8 s respectively. The main affecting and interaction process parameters are evaluated using analysis of variance (ANOVA) methodolgy. Mathematical models describing the relationship between welding parameters and shear failure load (SFL) are developed and the optimal FSSW parameters are specified. Design expert software is used for optimization of friction stir spot welding process parameters using response graphs and contour plots. With 95% confidence level, shear failure load of the dissimilar Al 1050—Cu 10100 joints are predicted using the developed empirical relations. It is found that the optimal results of the SFL is close to the optimal solution obtained from the mathematical model with less than 4% discrepancy.

Keywords: Friction Stir Spot Welding; FSSW, AA1050; C10100; RSM; Optimization

Received: December 4, 2020; Revised: April 13, 2021; Accepted: May 4, 2021; Prepublished online: May 17, 2021; Published: June 7, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Habibizadeh A, Honarpisheh M, Golabi S. Determining Optimum Shear Strength of Friction Stir Spot Welding Parameters of AA1050/C10100 Joints. Manufacturing Technology. 2021;21(3):315-329. doi: 10.21062/mft.2021.046.
Download citation

References

  1. Abbass, Muna K., Sabah Kh Hussein, and A. A. K. (2015). Optimization of friction stir spot welding parameters of dissimilar welded joints of aluminum alloy (AA2024T3) with pure copper sheets. In: International journal of engineering sciences& research technology, Vol. 9655, No. 12, pp.514-526. India. 2278-0181
  2. Chu, Q., Li, W. Y., Yang, X. W., Shen, J. J., Vairis, A., Feng, W. Y., & Wang, W. B. (2018). Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy. In: Journal of Materi-als Science and Technology, Vol. 34, No. 10, pp. 1739-1746. United States. 1005-0302 Go to original source...
  3. Colmenero, A. N., Orozco, M. S., Macías, E. J., Fernández, J. B., Muro, J. C. S. D., Fals, H. C., & Roca, A. S. (2019). Optimization of friction stir spot welding process parameters for Al-Cu dissimilar joints using the energy of the vibration signals. In: International Journal of Advanced Manufacturing Technology, Vol. 100, No. 9-12, pp. 2795-2802. United Kingdom. 1433-3015 Go to original source...
  4. Garg, A., & Bhattacharya, A. (2017). Strength and failure analysis of similar and dissimilar friction stir spot welds: Influence of different tools and pin geometries. In: Materials and Design, Vol. 127, pp. 272-286. Neth-erlands. 0264-1275 Go to original source...
  5. Dobrocky, D., Dostal, P., Sustr, M., Pokorny, Z., Studeny, Z. (2018), Analysis of weld joint of DX51D steel with AlMg3 alloy made by CMT welding method. In: Manufacturing Technoly, Vol.18, No.2, pp. 215-221. Czech Republic. 1213-2489. Go to original source...
  6. Heidarzadeh, A., Laleh, H. M., Gerami, H., Hosseinpour, P., Shabestari, M. J., & Bahari, R. (2018). The origin of different microstructural and strengthening mechanisms of copper and brass in their dissimilar fric-tion stir welded joint. In: Materials Science and Engineering A, Vol. 735, No. August, pp. 336-342. Netherlands. 0921-5093 Go to original source...
  7. Heideman, R., Johnson, C., & Kou, S. (2010). Metallurgical analysis of Al/Cu friction stir spot welding. In: Science and Technology of Welding and Joining, Vol. 15, No. 7, pp. 597-604. United Kingdom. 1743-2936 Go to original source...
  8. Jannet, S., Mathews, P. K., & Raja, R. (2015). Optimization of process parameters of friction stir welded AA 5083-O aluminum alloy using Response Surface Methodology. In: Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 63, No. 4, pp. 851-855. Poland. 2300-1917 Go to original source...
  9. Karthikeyan, R., & Balasubramanian, V. (2010). Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. In: International Journal of Advanced Manufactur-ing Technology, Vol. 51, No. 1-4, pp. 173-183. United Kingdom. 1433-3015 Go to original source...
  10. Kastih, V. T. O., Al, Z., Mubiayi, M. P., Akinlabi, E. T., & Makhatha, M. E. (2017). MICROSTRUCTURE EVOLUTION AND STATISTICAL ANALYSIS OF Al / Cu FRICTION-STIR SPOT WELDS. In: Mate-rials and technology, Vol. 51, No. 5, pp. 861-869. Slovenia. 1580-3414 Go to original source...
  11. Klobčar, D., Tušek, J., Skumavc, A., & Smolej, A. (2014). Parametric study of friction stir spot welding of aluminium alloy 5754. In: Metalurgija, Vol. 53, No. 1, pp. 21-24. Croatia. 0543-5846
  12. Klobčar, D., Tušek, J., Smolej, A., & Simončič, S. (2014). Parametric study of FSSW of aluminium alloy 5754 using a pinless tool. In: Welding in the World, Vol. 59, No. 2, pp. 269-281. Germany. 00432288 Go to original source...
  13. Kulekci, M. K. (2014). Effects of process parameters on tensile shear strength of friction stir spot welded aluminium alloy (EN AW 5005). In: Archives of Metallurgy and Materials, Vol. 59, No. 1, pp. 221-224. Poland. 17333490 Go to original source...
  14. Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., & Tian, Y. (2020). Friction stir spot welding of aluminium and copper: A review. In: Materials, Vol. 13, No. 1, pp. 156. Switzerland. 1996-1944 Go to original source...
  15. Mahmoud, T. S., & Khalifa, T. A. (2014). Microstructural and mechanical characteristics of aluminum alloy AA5754 friction stir spot welds. In: Journal of Materials Engineering and Performance, Vol. 23, No. 3, pp. 898-905. United States. 1059-9495 Go to original source...
  16. Manickam, S., & Balasubramanian, V. (2015). Maximizing Strength of Friction Stir Spot Welded Bimetallic Joints of AA6061 Aluminum Alloy and Copper Alloy by Response Surface. In: Int J mech Eng, Vol. 3, No. 12, pp. 15-26. United Kingdom. 0020-7403
  17. Mata, F., Beamud, E., Hanafi, I., Khamlichi, A., Jabbouri, A., & Bezzazi, M. (2010). Multiple Regression Pre-diction Model for Cutting Forces in Turning Carbon-Reinforced PEEK CF30. In: Advances in Materials Science and Engineering, Vol. 2010. Egypt. 16878442 Go to original source...
  18. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. In: Materials Science and Engineering A, Vol. 280, No. 1, pp. 37-49. Netherlands. 0921-5093 Go to original source...
  19. MUBIAYI, M. P., & AKINLABI, E. T. (2016). Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000. In: Transactions of Nonferrous Metals Society of China (English Edition), Vol. 26, No. 7, pp. 1852-1862. China. 1003-6326 Go to original source...
  20. Mubiayi, M. P., Akinlabi, E. T., & Makhatha, M. E. (2019). Current Trends in Friction Stir Welding (FSW) and Friction Stir Spot Welding (FSSW) (Vol. 6). Springer, 978-3-319-92750-3 Go to original source...
  21. MYERS, R. H., MONTGOMERY, D. C., & ANDERSON-COOK, C. M. (2016). DESIGN OF EXPERIMENTS FOR FITTING RESPONSE SURFACES-I. In: Response surface methodology (Fourth Edition), pp. 369-450. WILEY, 978-1-118-91601-8
  22. Özdemir, U., Sayer, S., & Yeni, Ç. (2012). Effect of pin penetration depth on the mechanical properties of friction stir spot welded aluminum and copper. In: Materialpruefung/Materials Testing, Vol. 54, No. 4, pp. 233-239. Germany. 00255300 Go to original source...
  23. Pandey, A. K., & Mahapatra, S. S. (2019). Investigation of weld zone obtained by friction stir spot welding (FSSW) of aluminium-6061 alloy. In: Materials Today: Proceedings, Vol. 18, pp. 4491-4500. United Kingdom. 22147853 Go to original source...
  24. Pérez, M., Parte, D., Azofra, J. C., Domingo, H., Fals, C., Roca, A. S., César, M., Orozco, S., & Macías, E. J. (2019). A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by ener-gy analysis of the vibration signals. In: The International Journal of Advanced Manufacturing Technology, Vol. 105, No.1, pp. 1823-1834. 1433-3015 Go to original source...
  25. R. Padmanaban, R. Vaira Vignesh, M. Arivarasu, K. K. P. and A. A. S. (2016). PROCESS PARAMETERS EFFECT ON THE STRENGTH OF FRICTION STIR SPOT WELDED AA6061. In: ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 9, pp. 6030-6035. Pakistan. 18196608
  26. R. Palanivel, I. Dinaharan, and R. F. L. (2019). Friction Stir Spot Welding of Similar and Dissimilar Nonferrous Alloys, In: Advances in Welding Technologies for Process Development, pp. 159-190. CRC Press. 9780367656515 Go to original source...
  27. Sahlot, P., Singh, A. K., Badheka, V. J., & Arora, A. (2019). Friction Stir Welding of Copper: Numerical Modelling and Validation. In: Transactions of the Indian Institute of Metals, Vol.72, pp.1339-1347. India. 09722815 Go to original source...
  28. Sejč, P., Belanová, J., Gábrišová, Z., Vanko, B. (2020). The Influence of Parameters of the Resistance Projection Welding of M10 Steel Nuts to the Galvanized Steel Sheet DP 600 on Selected Joint Characteristics, In: Manufacturing Technoly, Vol. 20, No.6, pp. 822-833. Czech Republic. 1213-2489. Go to original source...
  29. Shiraly, M., Shamanian, M., Toroghinejad, M. R., & Ahmadi Jazani, M. (2014). Effect of tool rotation rate on microstructure and mechanical behavior of friction stir spot-welded Al/Cu composite. In: Journal of Materials Engineering and Performance, Vol. 23, No. 2, pp. 413-420. United States. 10599495 Go to original source...
  30. Shiraly, M., Shamanian, M., Toroghinejad, M. R., Jazani, M. A., & Sadreddini, S. (2017). The Influence of Tool Geometry on the Mechanical Behaviour of FSSWed Al/Cu ARBed Composite. In: Transactions of the In-dian Institute of Metals, Vol. 70, No. 8, pp. 2205-2211. India. 09722815 Go to original source...
  31. Siddharth, S., & Senthilkumar, T. (2016). Optimization of Friction Stir Spot Welding Process Parameters of Dissimilar Al 5083 and C 10100 Joints Using Response Surface Methodology. In: Russian journal of non-ferrous metals, Vol. 57, No. 5, pp. 456-466. Russian Federation. 1934970X Go to original source...
  32. Siddharth, S., & Senthilkumar, T. (2017). Study of tool Penetration Behavior in Dissimilar Al5083 /C10100 Friction Stir Spot Welds. In: Procedia Engineering, Vol. 173, pp. 1439-1446. Netherlands. 18777058 Go to original source...
  33. Siddharth, S., & Senthilkumar, T. (2018). Optimizing Process Parameters for Increasing Corrosion Resistance of Friction Stir Spot Welded Dissimilar Al-5086/C10100 Joints. In: Transactions of the Indian Institute of Metals, Vol. 71, No. 4, pp. 1011-1024. India. 09722815 Go to original source...
  34. SIDDHARTH, S., SENTHILKUMAR, T., & CHANDRASEKAR, M. (2017). Development of processing windows for friction stir spot welding of aluminium Al5052 /copper C27200 dissimilar materials. In: Transactions of Nonferrous Metals Society of China (English Edition), Vol. 27, No. 6, pp. 1273-1284. China. 10036326 Go to original source...
  35. Sun, H., Zhou, Q., Zhu, J., & Peng, Y. (2017). Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint. In: Journal of Materials Engineering and Performance, Vol. 26, No. 12, pp. 5715-5722. United States. 10599495 Go to original source...
  36. Suryanarayanan, R., & Sridhar, V. G. (2020). Effect of Process Parameters in Pinless Friction Stir Spot Welding of Al 5754-Al 6061 Alloys. In: Metallography, Microstructure, and Analysis, pp. 1-12. United States. 21929262 Go to original source...
  37. Tozaki, Y., Uematsu, Y., & Tokaji, K. (2008). Effect of tool shoulder diameter on mechanical properties of friction stir spot welded joints. In: Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 74, No. 2, pp. 268-274. Japan. 13475363 Go to original source...
  38. Yoon, S., Kang, M., Kwon, Y., Hong, S., Park, D., Lee, K., Lim, C., & Seo, J. (2012). Influences of tool plunge speed and tool plunge depth on friction spot joining of AA5454-O aluminum alloy plates with different thicknesses. In: Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 629-633. China. 10036326 Go to original source...
  39. Yuan, W., Mishra, R. S., Webb, S., Chen, Y. L., Carlson, B., Herling, D. R., & Grant, G. J. (2011). Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. In: Journal of Materials Processing Technology, Vol. 211, pp. 972-977. Netherlands. 09240136 Go to original source...
  40. Zhang, Z., Yang, X., Zhang, J., Zhou, G., Xu, X., & Zou, B. (2011). Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. In: Materials and Design, Vol. 32, No. 8-9, pp. 4461-4470. Netherlands. 0264-1275 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.