Manufacturing Technology 2022, 22(1):59-70 | DOI: 10.21062/mft.2022.001

Parametric Optimisation of Micro Plasma Welding for Wire Arc Additive Manufacturing by Response Surface Methodology

Nor Ana Rosli ORCID...1, Mohd Rizal Alkahari ORCID...1,2, Faiz Redza Ramli ORCID...1,3, Mohd Fadzli bin Abdollah ORCID...1,3, Syahibudil Ikhwan Abdul Kudus ORCID...4, Safarudin Gazali Herawan ORCID...5
1 Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
2 Advanced Manufacturing Center, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
3 Center for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
4 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
5 Industrial Engineering Department, Fakulti Kejuruteraan, Universitas Bina Nusantara, Jakarta, 11430, Indonesia

High deposition rate with minimal heat input is one of the primary emphases in wire arc additive manufacturing. This study aims to determine the optimal input parameters of micro plasma welding for single-layer deposition. The stability of a single layer is crucial as it serves as the foundation relative to the deposition of layers to avoid a discontinuous multi-layer material. The study focuses on wire feeding speed, welding speed, and pulse and their interaction between the input and response variables. Based on the study, the regression equation between the three key parameters and the response using the Box-Behnken Design response surface methodology was proposed. The outcome demonstrates that the op-timized sample deposition produces a smooth surface appearance with no apparent defects.

Keywords: additive manufacturing, 3D printing, wire arc additive manufacturing, micro plasma arc welding, response surface methodology
Grants and funding:

The authors acknowledge the financial support from Zamalah Scheme, Universiti Teknikal Malaysia Melaka.

Received: July 15, 2021; Revised: December 18, 2021; Accepted: January 20, 2022; Prepublished online: January 28, 2022; Published: February 26, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Rosli NA, Alkahari MR, Ramli FR, Fadzli bin Abdollah M, Ikhwan Abdul Kudus S, Gazali Herawan S. Parametric Optimisation of Micro Plasma Welding for Wire Arc Additive Manufacturing by Response Surface Methodology. Manufacturing Technology. 2022;22(1):59-70. doi: 10.21062/mft.2022.001.
Download citation

References

  1. PERNICA, J. SUSTR, M., DOSTAL, P., BRABEC, M., & DOBROCKY, D. (2021). Tensile Testing of 3D Printed Materials Made by Different Temperature. Manufacturing Technology, Vol. 21, No. 3, pp. 398-404. doi: 10.21062/mft.2021.039. Go to original source...
  2. SRINIVAS, M., & BABU, B. S. (2017). A Critical Review on Recent Research Methodologies in Additive Manufacturing. Materials Today: Proceedings, Vol. 4, No. 8, pp. 9049-9059. doi: 10.1016/j.matpr.2017.07.258. Go to original source...
  3. ELKASEER, A., SCHNEIDER, S., & SCHOLZ, S. G. (2020). Experiment-Based Process Modeling and Optimization for High-Quality and Resource-Efficient FFF 3D Printing. Applied Sciences, Vol. 10, No. 8, pp. 2899. doi:10.3390/app10082899. Go to original source...
  4. HADEN, C. V., ZENG, G., CARTER, F. M., RUHL, C., KRICK, B. A., & HARLOW, D. G. (2017). Wire and arc additive manufactured steel: Tensile and wear properties. Additive Manufacturing, Vol. 16. No. 2010, pp. 115-123. doi: 10.1016/j.addma.2017.05.010. Go to original source...
  5. HANZL, P., & ZETKOVÁ, I. (2019). Benefits of a New Approach to Designing Milling Cutter Using Metal Additive Manufacturing. Manufacturing Technology, Vol. 19, No. 3, pp. 385-390. doi: 10.21062/ ujep/301.2019/a/1213-2489/MT/19/3/385. Go to original source...
  6. ORTEGA, A. G., CORONA GALVAN, L., SALEM, M., MOUSSAOUI, K., SEGONDS, S., ROUQUETTE, S., & DESCHAUX-BEAUME, F. (2019). Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a Cold Metal Transfer process. Science and Technology of Welding and Joining, Vol. 24, No. 6, pp. 538-547. doi: 10.1080/13621718.2018.1564986. Go to original source...
  7. MA, G., ZHAO, G., LI, Z., YANG, M., & XIAO, W. (2019). Optimization strategies for robotic additive and subtractive manufacturing of large and high thin-walled aluminum structures. The International Journal of Advanced Manufacturing Technology, Vol. 101, No. 5-8, pp. 1275-1292. doi: 10.1007/s00170-018-3009-3. Go to original source...
  8. KUMAR, A., & MAJI, K. (2020). Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm. Journal of Materials Engineering and Performance, Vol. 29, No. 5, pp. 3334-3352. doi: 10.1007/s11665-020-04847-1. Go to original source...
  9. JIN, W., ZHANG, C., JIN, S., TIAN, Y., WELLMANN, D., & LIU, W. (2020). Wire Arc Additive Manufacturing of Stainless Steels: A Review. Applied Sciences, Vol. 10. No. 5, pp. 1563. doi: 10.3390/app100515 63. Go to original source...
  10. SUN, L., JIANG, F., HUANG, R., YUAN, D., SU, Y., GUO, C., & WANG, J. (2020). Investigation on the process window with liner energy density for single-layer parts fabricated by wire and arc additive manufacturing. Journal of Manufacturing Processes, Vol 56, No. April 2019, pp. 898-907. doi: 10.1016/j.jmapro.202 0.05.054. Go to original source...
  11. WANG, J., SUN, Q., MA, J., JIN, P., SUN, T., & FENG, J. (2019). Correlation between wire feed speed and external mechanical constraint for enhanced process stability in underwater wet flux-cored arc welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 233, No. 10, pp. 2061-2073. doi: 10.1177/0954405418811783. Go to original source...
  12. LI, F., CHEN, S., SHI, J., ZHAO, Y., & TIAN, H. (2018). Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures. Applied Sciences, Vol. 8, No. 2, pp. 207. doi: 10.3390/app8020207. Go to original source...
  13. DINOVITZER, M., CHEN, X., LALIBERTE, J., HUANG, X., & FREI, H. (2019). Effect of Wire and Arc Additive Manufacturing ( WAAM ) Process Parameters on Bead Geometry and Microstructure. Additive Manufacturing, Vol. 26. No. February, pp. 138-146. doi: 10.1016/j.addma.2018.12.013. Go to original source...
  14. WANG, H., JIANG, W., OUYANG, J., & KOVACEVIC, R. (2004). Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. Journal of Materials Processing Technology, Vol. 148, No. 1, pp. 93-102. doi: 10.1016/j.jmatprotec.20 04.01.058. Go to original source...
  15. KNEZOVIC, N., & DOLSAK, B. (2018). In-process non-destructive ultrasonic testing application during wire plus arc additive manufacturing. Advances in Production Engineering & Management, Vol. 13. No. 2, pp. 158-168. doi:10.14743/apem2018.2.281. Go to original source...
  16. GOMEZ, A. O., GALVAN, L. C., DESCHAUX-BEAUME, F., MEZRAG, B., & ROUQUETTE, S. (2018). Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer process. Science and Technology of Welding and Joining, Vol. 23, No. 4, pp. 316-332. doi: 10.1080/13621718.2017.1388995. Go to original source...
  17. SARATHCHANDRA, D. T., DAVIDSON, M. J., & VISVANATHAN, G. (2020). Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Materials and Manufacturing Processes, Vol. 35. No. 7, pp. 852-858. doi: 10.1080/10426914.2020.1743852. Go to original source...
  18. ROSLI, N. A., ALKAHARI, M. R., ABDOLLAH, M. F. BIN, MAIDIN, S., RAMLI, F. R., & HERAWAN, S. G. (2021). Review on effect of heat input for wire arc additive manufacturing process. Journal of Materials Research and Technology, Vol. 11,pp. 2127-2145. doi:10.1016/j.jmrt.2021.02.002. Go to original source...
  19. MÜLLER, J., GRABOWSKI, M., MÜLLER, C., HENSEL, J., UNGLAUB, J., THIELE, K., KLOFT, H., & DILGER, K. (2019). Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals. doi: 10.3390/met9070725. Go to original source...
  20. LIU, G., & XIONG, J. (2020). External filler wire based GMA-AM process of 2219 aluminum alloy. Materials and Manufacturing Processes, Vol. 35. No. 11, pp. 1268-1277. doi: 10.1080/10426914.2020.1779936. Go to original source...
  21. NAZAN, M. A., RAMLI, F. R., ALKAHARI, M. R., SUDIN, M. N., & ABDULLAAH, M. A. (2017). Process parameter optimization of 3D printer using Response Surface Method. ARPN Journal of Engineering and Applied Sciences, Vol. 12. No. 7, pp. 2291-2296.
  22. ROSLI, N. A., ALKAHARI, M. R., RAMLI, F. R., MAIDIN, S., SUDIN, M. N., SUBRAMONIAM, S., & FURUMOTO, T. (2018). Design and Development of a Low-Cost 3D Metal Printer. Journal of Mechanical Engineering Research and Developments, 41(3), 47-54. doi: 10.26480/jmerd.03.2018.47.54. Go to original source...
  23. TANG, S., WANG, G., HUANG, C., LI, R., ZHOU, S., AND ZHANG, H., (2020). Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyping Journal, Vol. 26. No. 7, pp. 1183-1195. doi: 10.1108/RPJ-08-2019-0229. Go to original source...
  24. BENAKIS, M., COSTANZO, D., & PATRAN, A. (2020). Current mode effects on weld bead geometry and heat affected zone in pulsed wire arc additive manufacturing of Ti-6-4 and Inconel 718. Journal of Manufacturing Processes, Vol. 60. No. July, pp. 61-74. doi: 10.1016/j.jmapro.2020.10.018. Go to original source...
  25. ALI, Y., HENCKELL, P., HILDEBRAND, J., REIMANN, J., BERGMANN, J. P., & BARNIKOL-OETTLER, S. (2019). Wire arc additive manufacturing of hot work tool steel with CMT process. Journal of Materials Processing Technology, Vol. 269. No. July 2018, pp. 109-116. doi: 10.1016/j.jmatprotec.2019.01.034. Go to original source...
  26. SPANIOL, E., UNGETHÜM, T., TRAUTMANN, M., ANDRUSCH, K., HERTEL, M., & FÜSSEL, U. (2020). Development of a novel TIG hot-wire process for wire and arc additive manufacturing. Welding in the World, Vol. 64. No. 8, pp. 1329-1340. doi: 10.1007/s40194-020-00871-w. Go to original source...
  27. WU, B., DING, D., PAN, Z., CUIURI, D., LI, H., HAN, J., & FEI, Z. (2017). Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. Journal of Materials Processing Technology, Vol. 250, pp. 304-312. doi: 10.1016/j.jmatprotec.2017.07.037. Go to original source...
  28. WANG, L. L., WEI, J. H., & WANG, Z. M. (2018). Numerical and experimental investigations of variable polarity gas tungsten arc welding. The International Journal of Advanced Manufacturing Technology, Vol. 95. No. 5-8, pp. 2421-2428. doi: 10.1007/s00170-017-1387-6. Go to original source...
  29. CORRADI, D. R., BRACARENSE, A. Q., WU, B., CUIURI, D., PAN, Z., & LI, H. (2020). Effect of Magnetic Arc Oscillation on the geometry of single-pass multi-layer walls and the process stability in wire and arc additive manufacturing. Journal of Materials Processing Technology, Vol. 283. No. December 2019, pp. 116723. doi: 10.1016/j.jmatprotec.2020.116723. Go to original source...
  30. SU, C., & CHEN, X. (2019). Effect of depositing torch angle on the first layer of wire arc additive manufacture using cold metal transfer (CMT). Industrial Robot: The International Journal of Robotics Research and Application, Vol. 46. No. 2, pp. 259-266. doi: 10.1108/IR-11-2018-0233. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.