Manufacturing Technology 2022, 22(1):2-9 | DOI: 10.21062/mft.2022.003

The Effect of Boriding and Heat Treatment on the Structure and Properties of 100Cr6 Steel

David Bricín ORCID...1, Antonín Kříž ORCID...1, Jan Novotný ORCID...2, Zbyněk Špirit ORCID...3
1 Department of Material Science and Technology, Faculty of Mechanical Engineering, University of West Bohemia in Pilsen. Univerzitní 8, 301 00 Plzen. Czech Republic
2 Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic
3 4Centrum výzkumu Rez s.r.o., Morseova 1245/6, 301 00, Pilsen, Czech Republic

The main aim of this case study is to present the changes caused by heat treatment on the structure and properties of 100Cr6 steel by annealing, hardening, and tempering in combination with previous chemical-heat treatment (CHT) by boriding. The boriding causes changes to the microstructure of the steel samples, which include a change in the morphology of the deposited cementite and a change in the volume of the chromium carbide particles. The cementite is transformed from its original granular form to a lamellar form. An increase in the proportion of chromium carbide particles in the sample occurs due to the higher affinity of chromium for carbon. This leads to precipitation of chromium carbides rather than carbides of iron. A multi-phase diffusion layer Fe2B-FeB with a thickness of 31 ± 2.8 µm is formed during boriding, with a typical tooth-like texture. Although the diffusion layer does not have the same toughness and resistance as the single-phase Fe2B diffusion layer, samples after boriding increase their resistance to tribological abrasion by 29 % compared to samples without this treatment. After quenching and tempering of the borided samples, a maximum tensile strength of Rm = 1779 MPa is measured. Compared to samples which are only quenched and subsequently tempered, this is an increase in tensile strength of about 59 %.

Keywords: 100Cr6, boriding, heat treatment, hardening, tempering, annealing
Grants and funding:

This study was supported by the project SGS-2021-030 "Development of new materials, application of modern methods of their processing, ecological production, welding, and testing".

Received: August 23, 2021; Revised: January 20, 2022; Accepted: January 26, 2022; Prepublished online: January 28, 2022; Published: February 26, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bricín D, Kříž A, Novotný J, Špirit Z. The Effect of Boriding and Heat Treatment on the Structure and Properties of 100Cr6 Steel. Manufacturing Technology. 2022;22(1):2-9. doi: 10.21062/mft.2022.003.
Download citation

References

  1. SEDLAK, J., TROPP, P., CHLADIL, J., OSICKA, K. and SLIWKOVA, P. (2015). High-Speed Cutting of Bear-ing Rings from Material 100Cr6. Manufacturing Technology, 15(5), pp.899-908. Go to original source...
  2. FABIAN, P. and ZRAK, A. (2016). Evaluation of Selected Properties of Steel 100Cr6 at Different Ways of Heat Treatment. Manufacturing Technology, 16(4), pp.687-691. Go to original source...
  3. KAWULOK, R., SCHINDLER, I., SOJKA, J., KAWULOK, P., OPĚLA, P., PINDOR, L., GRYCZ, E., RUSZ, S. AND ŠEVČÁK, V. (2020). Effect of Strain on Transformation Diagrams of 100Cr6 Steel. In: Crystals, 10(4), p.326 Go to original source...
  4. Tran, X., Vu, T. and Dang, K. (2017). NUMERICAL SIMULATION OF THE HEAT TREATMENT PROCESS FOR 100Cr6 STEEL. Acta Metallurgica Slovaca, 23(3), pp.236-243. Go to original source...
  5. GERSTENBERGER, J. (2010). Vytváření tvrdých a otěruvzdorných povrchů pomocí boridování. In: MM Spektrum, Vol. 3
  6. ZIMMERMAN, C. (2013). Boriding (Boronizing) of Metals. In: Steel Heat Treating Fundamentals and Processes. pp.709-724 Go to original source...
  7. ČSN EN ISO 6892-1. (2019). Metallic materials - Tensile testing -Part 1: Method of test at room temperature. Available at: http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=420310-csn-en-iso-6892-1&kat=510425
  8. ASTM G99. (2016). Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.[online] Astm.org. Available at:https://www.astm.org/DATABASE.CART/HISTORICAL/G99-05R16.htm
  9. JECH, J. (1977). Tepelné zpracování oceli. Nakladatelství technické literatury. Praha
  10. MEHL, R. (2015). The Structure and Rate of Formation of Pearlite. Metallography, Microstructure, and Analysis, 4(5), pp.423-443 Go to original source...
  11. KARTAL, G., TIMUR, S., SISTA, V., ERYILMAZ, O. AND ERDEMIR, A. (2011). The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB). Surface and Coatings Technology, 206(7), pp.2005-2011 Go to original source...
  12. USLU, I., COMERT, H., IPEK, M., CELEBI, F., OZDEMIR, O. AND BINDAL, C. (2007). A comparison of borides formed on AISI 1040 and AISI P20 steels. Materials & Design, 28(6), pp.1819-1826. Go to original source...
  13. SKÁLOVÁ, J., KOUTSKÝ, J. AND MOTYČKA, V. (2000). Nauka o materiálech. Tiskové středisko ZČU. Plzeň. ISBN: 80-7082-677-0
  14. KRAUS, V. (1999). Tepelné zpracování a slinování. 2. vydání. Tiskové středisko ZČU, Plzeň. ISBN 80-708-2582-0

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.