Manufacturing Technology 2022, 22(2):231-239 | DOI: 10.21062/mft.2022.022

Study on Lapping Process of 304 Stainless Steel Using Tribochemical Fixed-Abrasive Lapping Platen

Jianxiu Su ORCID..., Xiaofeng Zhang ORCID..., Mingpu Xue ORCID..., Wen Xiao ORCID..., Tianyi Zhang ORCID...
Henan Institute of Science and Technology, Xinxiang, 453003, China

Based on the previous research on the 304 stainless steel lapping and polishing in our research group, the tribochemical fixed-abrasive lapping platen for 304 stainless steel lapping and polishing were developed. The effects of the different pressure, the rotation speed, the lapping time and the abrasive size on the surface roughness and the material removal rate (MRR) were researched. It was concluded that when the abrasive size is 28 µm, the lapping time is 15 min, the lapping speed is 90r/min, the lapping pressure is 27.580 KPa, and the maximum MRR is 412.524 nm/min. When the lapping time is 15 minutes, the rotating speed is 15 r/min, the lapping pressure is 13.790 KPa, the surface roughness Ra drops to 41nm. These findings show that the influence degree on the MRR from better to worse is the abrasive size, the lapping pressure, the rotation speed of the lapping platen and the lapping time. The order of the influence degree on the surface roughness from better to worse is the abrasive size, the rotation speed of the lapping platen, the lapping pressure and the lapping time. The results can give an important reference for next study on the tribochemical mechanical lapping of fixed-abrasive.

Keywords: Material removal rate, Surface roughness, Fixed-abrasive lapping, Tribochemistry, 304 stainless steel.
Grants and funding:

The authors acknowledge the financial support of the Science and Technology Research Project of Henan Province (No.192102210058) and the National Natural Science Foundation of China (No.U1804142).

Received: January 6, 2022; Revised: April 6, 2022; Accepted: April 6, 2022; Prepublished online: April 12, 2022; Published: May 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Su J, Zhang X, Xue M, Xiao W, Zhang T. Study on Lapping Process of 304 Stainless Steel Using Tribochemical Fixed-Abrasive Lapping Platen. Manufacturing Technology. 2022;22(2):231-239. doi: 10.21062/mft.2022.022.
Download citation

References

  1. LOGOTHETIDIS S., LASKARAKIS A. (2009). Towards the optimization of materials and processes for flexible organic electronics devices. The European Physical Journal-Applied Physics, 46(1): 12502. https://doi.org/10.1051/epjap/2009041 Go to original source...
  2. HANADA T., NEGISHI T., SHIROISHI I., SHIRO T. (2010). Plastic substrate with gas barrier layer and transparent conductive oxide thin film for flexible displays. Thin Solid Films, 518(11): 3089-3092. https://doi.org/10.1016/j.tsf.2009.09.166 Go to original source...
  3. LEE S., HAN J. H., LEE S. H., BAEK G. H., PARK J. S. (2019). Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display. Journal of metals, 71: 197-211. https://doi.org/10.1007/s11837-018-3150-3 Go to original source...
  4. WU W.J., CHEN J.W., WANG J.S, ZHOU L., TAO H., ZOU J.H., XU M., WANG L., PENG J.B., CHAN M.S. (2018). High-Resolution Flexible AMOLED Display Integrating Gate Driver by Metal-Oxide TFTs. EEE Electron Device Letters, 39(11): 1660-1663. DOI: 10.1109/LED.2018.2871045 Go to original source...
  5. HONG K., YU H. K., LEE I., KIM S., KIM Y., KIM K., LEE J. L. (2018). Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Advances, 8: 26156-26160. DOI: 10.1039/C8RA05759A Go to original source...
  6. FENG W.L., HUANG P. (2012). Advances in flexible displays substrates. Chinese Journal of Liquid Crystal and Display, 27(5): 599-607. Go to original source...
  7. YANG L. Y., YIN S. G., HUA Y. L., LU Y., WANG C., DONG B. (2006). Flexible Substrates and Encapsulation Methods for Flexible Organic Light Emitting Devices. Journal of Functional Materials, 37(1): 10-13,.
  8. DUAN L., ZHANG C., ZHANG G.H. (2010). Prepartion and behavior of flexible organic light emitting diodes. China Sciencepaper, 5(4): 287-290.
  9. LIU H. Y. (2009). Performance and Test of Glass Substrate for TFT-LCD. Glass, 36(1): 22-24.
  10. LIU Z.H., CHEN S.K., PENG Y.M., LI J.J., SU J.X. (2018). Compositions of slurry used in chemical-mechanically polishing 304 stainless steel. Diamond & Abrasives Engineering, 38(2): 78-81+88. DOI: 10.13394/j.cnki.jgszz.2018.2.0016 Go to original source...
  11. SUGIMOTO A., OCHI H., FUJIMURA S., YOSHIDA A., MIYADERA T., TSUCHIDA M. (2004). Flexible OLED displays using plastic substrates. IEEE Journal of Selected Topics in Quantum Electronics, 10(1): 107-114. DOI: 10.1109/JSTQE.2004.824112 Go to original source...
  12. BARDSLEY J. N. (2004). International OLED technology roadmap. IEEE Journal of Selected Topics in Quantum Electronics, 10(1): 3-9. DOI: 10.1109/JSTQE.2004.824077 Go to original source...
  13. YAMADA N., OGURA T., KUBO Y., NAGASAKI S. (2009). Stainless steel foil for flexible display [P]. CN102026743A, May 13.
  14. ZARDETTO V., BROWN T. M., REALE A., DI CARLO A. (2011) Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Journal of Polymer Science Part B: Polymer Physics, 49(9): 638-648. https://doi.org/10.1002/polb.22227 Go to original source...
  15. SOMEYA T. (2010). Flexible electronics: Tiny lamps to illuminate the body. Nature Materials, 9: 879-880. https://doi.org/10.1038/nmat2886 Go to original source...
  16. SUN Y.Y., HUA Y.L., YIN S.G., FENG X.L., ZHENG J.J., WANG S.G. (2005). Flexible organic light emitting material and devices. Journal of Functional Materials, 36(2): 161-164.
  17. SPECIAL STEEL ENTERPRIES ASSOCIATION OF CHINA (2019). Uultra-thin stainless steel precision strip for flexible display screen. China Special Steel Enterprises Association Announcement for Group Standards and Codes.
  18. ERITT M., MAY C., LEO K., TOERKER M., RADEHAUS C. (2010). OLED manufacturing for large area for lighting application. Thin Solid Films, 518(11): 3042-3045. https://doi.org/10.1016/j.tsf.2009.09.188 Go to original source...
  19. CHEN J.P. (2016). Study on ultra-thin SUS304 stainless steel polishing fluid for chemical mechanical polishing. College of Mechanical and Power Engineering, Henan University of Technology. Doi: 10.7666/d.D01064104 Go to original source...
  20. LI Q., CHEN S.K., PENG Y.N., QIN H.Q., FU S.F., SU J.X. (2016). Chemical mechanical polishing process parameters of 304 stainless steel. Diamond & Abrasives Engineering, 36(5): 21-25. DOI: 10.13394/j.cnki.jgszz.2016.5.0004 Go to original source...
  21. XIE Z. Y., HUNG L. S., ZHU F.R. (2003). A flexible top-emitting organic light-emitting diode on steel foil. Chemical Physics Letters, 381(5): 691-696. DOI: 10.1016/j.cplett.2003.09.147 Go to original source...
  22. DESHPANDE L. S., RAMAN S., SUNANTA O., AGBARAJI C. (2008). Observations in the Flat Lapping of Stainless Steel and Bronze. Wear, 265(1-2): 105-116. https://doi.org/10.1016/j.wear.2007.09.004 Go to original source...
  23. ZHU C. R., LV B. H., YUAN J. L. (2010). Influences of Properties of Fixed Abrasive Tool on the Lapping Process of Stainless Steel Substrate. Advanced Materials Research, 135: 365-369. https://doi.org/10.4028/www.scientific.net/AMR.135.365 Go to original source...
  24. ZHU C.R., LV B.H., YUAN J. L. (2012). Influence of Bond Material Concentration on the Mechanical Properties of Fixed Abrasive Lapping Tool for Stainless Steel. Key Engineering Materials, 499: 372-377. https://doi.org/10.4028/www.scientific.net/KEM.499.372 Go to original source...
  25. SU J.X., CHEN J. P., LI Q., QIN H.Q. (2016). Study on Slurry of Chemical Mechanical Polishing 304 Stainless Steel Based on Ferric Chloride and Oxalic Acid. Material Science Forum, 861: 102-107. https://doi.org/10.4028/www.scientific.net/MSF.861.102 Go to original source...
  26. SU J.X., LI J.J., WANG Z.K., LI Y.F., LIU L.L. (2017). Chemical action in CMP 304 stainless steel based on hydrogen peroxide slurry. Acta Technica, 62(4B): 1-12.
  27. SU J.X., PENG Y.A., LIU Z.H., LI J.J., CHEN J.P., LI Y.F. (2017). Study on the pH Value Regulator of Ferric Chloride Based Slurry in Chemical Mechanical Polishing 304 Stainless Steel. U.P.B. Stiintific Buletin, Series B, 79(2): 179-190.
  28. FAN S. Z., FU S. F., YAO J. G., MA L.J., SU J.X. (2014). Design of lapping paste in lapping 304 ultra-thin stainless steel sheet. Advanced Materials Research, 1027: 93-96. https://doi.org/10.4028/www.scientific.net/AMR.1027.93 Go to original source...
  29. HEINICKE G. (1964). Wissenschaft und Fortschritt, 14: 163-168.
  30. LUO Q.F., LU J., XU X.P. (2016). A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools. Wear, 350-351: 99-106. https://doi.org/10.1016/j.wear.2016.01.014 Go to original source...
  31. HARA H., SANO Y., MIMURA H., ARIMA K., KUBOTA A., YAGI K., MURATA J., YAMAUCH K. (2006). Novel abrasive-free planarization of 4H-SiC, No.0001) using catalyst. Journal of Electronic Materials, 35: L11-L14. https://doi.org/10.1007/s11664-006-0218-6 Go to original source...
  32. HARA H., SANO Y., MIMURA H., ARIMA K., KUBOTA A., YAGI K., MURATA J., YAMAUCHI K. (2007). Novel abrasive-free planarization of Si and SiC using catalyst. Towards Synthesis of Micro/Nano Systems, 267-270. DOI: 10.1007/1-84628-559-3_45 Go to original source...
  33. ZHANG P. (2017). Research on the Key Technologies of Ultra Precision Polishing of Silicon Carbide Single Crystal Substrate. Shandong University.
  34. FAN P. F., ZHAI W. J. AND ZHANG X. X. (2016). Effects of Electric Potentials on Tribological Properties of SiC/HT200 Pairs in NaOH Solutions. Journal of Harbin Institute of Technology (New Series), 23(3): 75-79.
  35. SU J. X., ZHANG X. M., WAN X.Y., FU S.F. (2014). Study on Fixed Abrasive Lapping SiC Single Crystal Substrate (0001) C Surface. Nanotechnology and Precision Engineering, 12(6): 417-423. DOI: 10.13494/j.npe.20140046 Go to original source...
  36. LI B., LI J., GAO P., ZHU Y.W., LUO H.J., ZUO D.W. (2013). Study on Depth of Subsurface Crack Layer by Free and Fixed Abrasive Lapping. China Mechanical Engineering, 24(7): 895-898+905.
  37. QUAN W., HU Z.Q., CHERNEGA S.M., MA J. (2009). Aluminum alloy surface of micro-arc oxidation coating preparation process design. Light Alloy Fabrication Technology, 37(12): 45-48+57.
  38. HU Y.P., ZHUO L.S., WANG C.Z., ZHAO G., CHEN D.Y., SHEN Y.D. (1989). Decide technique parmeters for designing and applying turning shaping equipment of crush roll. Journal of Anhui Institute of Technology, 4: 29-42.
  39. WANG Y., ZUO Y. S., JIN Z. J. (2015). Analysis of Material Removal Rate in Lapping of the Hard Alloy Rings. Mechanical Engineering and Technology, 4(2): 127-134. DOI: 10.12677/MET.2015.42013. Go to original source...
  40. LUO J.F., DORNFELD A.D. (2001). Material removal mechanism in chemical mechanical polishing: Theory and modeling. IEEE Transactions on Semiconductor Manufacturing, 14(2): 112-133. DOI: 10.1109/66.920723 Go to original source...
  41. PRESTON W. (1927). The Theory and Design of Plate Glass Polishing Machine. Journal of Glass Technology, 11(44): 214-256.
  42. SUN Y.Y., SHANG C.M. (2017). Modeling and Simulation Study on Material Removal Rate of Consolidation Abrasive Grinding. Automobile Parts, 12: 34-37. DOI: 10.19466/j.cnki.1674-1986.2017.12.008 Go to original source...
  43. LI J., WANG H.M., WANG W. Z., HUANG J.D., ZHU Y.W., ZUO D.W. (2015). Model of Surface Roughness in Fixed Abrasive Lapping of K9 Glass. Journal of Mechanical Engineering, 51(21): 199-205. Go to original source...
  44. YERUVA S. B. (2005). Particle scale modeling of material removal and surface roughness in chemical mechanical polishing. University of Florida.
  45. CHEN M. J., ZHANG F.H., DONG S., LI D. (2001). Study on ultra-precision grinding of optical glasses in the ductile mode. Chinese Mechanical Engineering, 4: 460-463+484.
  46. WANG X., ZHANG X. J. (2009). Micro theoretical model for grinding SiC mirror with fixed abrasive. Optics and Precision Engineering, 17(3): 513-518.
  47. LUO R., XU L.M., CHA T.J., YANG Z.Q., SHI L., HU D.J. (2013). Modeling and simulation of surface roughness for spherical grinding. Journal of Shanghai Jiaotong University, 47(5): 709-714. DOI: 10.16183/j.cnki.jsjtu.2013.05.005 Go to original source...
  48. RUBEİOVÁ K., PEKOVIĈ M., JIRKOVÁ H., HRADIL D. (2021). Resistance of tool steel processed by unconventional forming technology against abrasive wear. Manufacturing Technology, 21(2): 241-246. DOI: 10.21062/mft.2021.028 Go to original source...
  49. FARSKŬ J., BAKİA T., ZETEK M. (2020). Grinding of maraging steel 1.2709 with SiC grinding wheels and effect of grinding conditions on the surface roughness and wear of the wheels. Manufacturing Technology, 20(1): 18-22. DOI: 10.21062/mft.2020.018 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.