Manufacturing Technology 2022, 22(2):240-253 | DOI: 10.21062/mft.2022.023

Flexural and Out-of-Plane Compression Performance of Hexagonal Rubber Wood Core Sandwich with Increasing Cell Wall Thickness

Jennise Tan Teng Teng ORCID...1, Mohd Yuhazri Yaakob ORCID...2, Mohd Amirhafizan Bin Husin ORCID...2, Kamarul Amir Mohamed ORCID...2, Myia Yuzrina ORCID...3, W. Lau ORCID...4
2 Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
3 Department of Mechanical Engineering, Politeknik Merlimau, Karung Berkunci 1031, Pejabat Pos Merlimau, 77300 Merlimau, Melaka, Malaysia
4 Faculty of Engineering and Technology, Multimedia University, 75450 Jalan Ayer Keroh Lama, Melaka, Malaysia
5 PT. Suar Utama Produktifitas, Slipi - Jakarta Barat 11410 - DKI Jakarta, Indonesia

This paper investigates the rubber wood honeycomb core by manipulating its cell wall thickness. Rubber wood honeycomb core was fabricated with cell walls range from 1 mm to 3 mm. The impacts of the cell geometrical parameters on the flexural and out-of-plane compression performance are studied. In the case of solid rubber wood without facesheet, the density is much higher than those rubber wood honeycomb composites. The failure can be disastrous without facesheet under bending. Rubber wood honeycomb sandwiches are able to offer the similar specific flexural strength with lower density. With increasing wall thickness from 1 mm to 3 mm, the specific flexural strength increased by 12.32 %. Meanwhile, specific compressive strength improved by 11 % from 1 mm to 2 mm. However, its specific strength dropped by 3.55 % when the wall thickness at 3 mm. Minimum improvement in the compressive strength per density has caused the decrement.

Keywords: Flexural, Honeycomb Sandwich, Rubber Wood, Wall Thickness, Wooden Core
Grants and funding:

Authors would like to thank Ministry of Energy, Science, Technology, Environment and Climate Change by providing Grant FRGS/1/2017/TK03/FTK-AMC/I00027.

Received: September 30, 2021; Revised: March 3, 2022; Accepted: April 11, 2022; Prepublished online: April 12, 2022; Published: May 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Teng Teng JT, Yaakob MY, Amirhafizan Bin Husin M, Mohamed KA, Yuzrina M, Lau W. Flexural and Out-of-Plane Compression Performance of Hexagonal Rubber Wood Core Sandwich with Increasing Cell Wall Thickness. Manufacturing Technology. 2022;22(2):240-253. doi: 10.21062/mft.2022.023.
Download citation

References

  1. CHEN, Y., HOU, S., FU, K., HAN, X., YE, L. (2017). Low-Velocity Impact Response of Composite Sandwich Structures: Modelling and Experiment. In: Composite Structures, 168, pp. 322-334. https://doi.org/10.1016/j.compstruct.2017.02.064 Go to original source...
  2. CHULI, A.J., SAID, M.R., POKAAD, A.Z. (2017). Empty Aluminium Honeycomb Underquasi-Static Loading Experiment and Simulation. In: Journal of Advanced Manufacturing Technology, 12(1), pp. 91-100. https://jamt.utem.edu.my/jamt/article/view/4272/3375 [Accessed on 8th June 2021]
  3. HAN, B., QIN, K., YU, B., WANG, B., ZHANG, Q., LU, T.J. (2016). Honeycomb-Corrugation Hybrid as a Novel Sandwich Core for Significantly Enhanced Compressive Performance. In: Materials and Design, 93, pp.271-282. https://doi.org/10.1016/j.matdes.2015.12.158 Go to original source...
  4. BOOPALAN, M., NIRANJANAA, M., UMAPATHY, M.J. (2013). Study on the Mechanical Properties and Thermal Properties of Jute and Banana Fiber Reinforced Epoxy Hybrid Composites. In: Composites Part B: Engineering, 51, pp. 54-57. https://doi.org/10.1016/j.compositesb.2013.02.033 Go to original source...
  5. WANG, J., SHI, C., YANG, N., SUN, H., LIU, Y., SONG, B. (2018). Strength, Stiffness, and Panel Peeling Strength of Carbon Fiber-Reinforced Composite Sandwich Structures with Aluminum Honeycomb Cores for Vehicle Body. In: Composite Structures, 184, pp. 1189-1196. https://doi.org/10.1016/j.compstruct.2017.10.038 Go to original source...
  6. JURICKA, M., FOJTL, L., RUSNÁKOVÁ, S., JUŘIČKOVÁ, E. (2020). Acoustic Characteristics of Composite Structures Used in Train. In: Manufacturing Technology, 20, pp. 335-41. https:// DOI: 10.21062/mft.2020.043 Go to original source...
  7. KALINA T. (2020). Determination of Cohesive Parameters for Mode II of Epoxy Adhesive. In: Manufacturing Technology, 20, pp. 190-194. https:// doi: 10.21062/mft.2020.042 Go to original source...
  8. FU, Y., SADEGHIAN, P. (2020). Flexural and Shear Characteristics of Bio-Based Sandwich Beams made of Hollow and Foam-Filled Paper Honeycomb Cores and Flax Fiber Composite Skins. In: Thin-Walled Structures, 153, pp. 106834. https://doi.org/10.1016/j.tws.2020.106834 Go to original source...
  9. SMARDZEWSKI, J. (2019). Experimental and Numerical Analysis of Wooden Sandwich Panels with An Auxetic Core and Oval Cells. In: Materials and Design, 183, pp. 108159. https://doi.org/10.1016/j.matdes.2019.108159 Go to original source...
  10. M. ®MINDÁK, Z. PELAGIĆ, J. SOUKUP, (2015). Analysis of Fiber Orientation Influence to Dynamic Properties of Composite Structures. In: Manufuring Technology, 15, pp. 61. ISSN 1213-2489 Go to original source...
  11. KHOSHRAVAN, M.R., NAJAFI POUR, M. (2014). Numerical and Experimental Analyses of the Effect of Different Geometrical Modelings on Predicting Compressive Strength of Honeycomb Core. In: Thin-Walled Structures, 84, pp. 423-431. https://doi.org/10.1016/j.tws.2014.07.016 Go to original source...
  12. SANJAY, M.R., MADHU, P., JAWAID, M., SENTHAMARAIKANNAN, P., SENTHIL, S., PRADEEP, S. (2018). Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. In: Journal of Cleaner Production, 172, pp. 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101 Go to original source...
  13. KARADUMAN, Y., ONAL, L. (2016). Flexural Behavior of Commingled Jute/Polypropylene Non-Woven Fabric Reinforced Sandwich Composites. In: Composites Part B: Engineering, 93, pp. 12-25. https://doi.org/10.1016/j.compositesb.2016.02.055 Go to original source...
  14. JUSTICE, M., MPHO, M., MPITSO, K., PERCY, S. (2020). Curing, Thermal and Mechanical Properties of Waste Tyre Derived Reclaimed Rubber - Wood Flour Composites. In: Materials Today Communications, 25, pp. 101204. https://doi.org/10.1016/j.mtcomm.2020.101204 Go to original source...
  15. BUNZEL, F., WISNER, G., STAMMEN, E., DILGER, K. (2019). Structural Sandwich Composites Out of Wood Foam Core and Textile Reinforced Concrete Sheets for Versatile and Sustainable Use in the Building Industry. In: Materials Today: Proceedings, 31, pp. S296-S302. https://doi.org/10.1016/j.matpr.2020.01.382 Go to original source...
  16. BARTON, J., CZAJA, K., GRZYMEK, M., LIPOK, J. (2017). Evaluation of Wood-Polyethylene Compo-sites Biodegradability Caused by Filamentous Fungi. pp. International Biodeterioration and Biodegradation, 118, pp. 10-18. https://doi.org/10.1016/j.ibiod.2017.01.014 Go to original source...
  17. MOHAMMADI, M.S., NAIRN, J.A. (2017). Balsa Sandwich Composite Fracture Study: Comparison of Laminated to Solid Balsa Core Materials and Debonding from Thick Core Materials. In: Composites Part B: Engineering, 122, pp. 165-172. https://doi.org/10.1016/j.compositesb.2017.04.018 Go to original source...
  18. HYTÖNEN, J., NURMI, J., KAAKKURIVAARA, N., KAAKKURIVAARA, T. (2019). Rubber Tree (He-vea Brasiliensis) Biomass, Nutrient Content, and Heating Values in Southern Thailand. In: Forests, 10, pp. 2-11. https://doi.org/10.3390/f10080638 Go to original source...
  19. BLAGODATSKY, S., XU, J., CADISCH, G. (2016). Carbon Balance of Rubber (Hevea Brasiliensis) Plantations: A Review of Uncertainties at Plot, Landscape and Production Level. Agriculture, In: Ecosystems and Environment, 221, pp. 8-19. https://doi.org/10.1016/j.agee.2016.01.025 Go to original source...
  20. HOMKHIEW, C., RATANAWILAI, T., THONGRUANG, W. (2014). Effects of Natural Weathering on the Properties of Recycled Polypropylene Composites Reinforced with Rubberwood Flour. In: Industrial Crops & Products, 56, pp. 52-59. https://doi.org/10.1016/j.indcrop.2014.02.034 Go to original source...
  21. SCATOLINO, M.V., SORIANO, J., (2020). Static Bending of Glulam Beams Manufactured with Rubber Wood and Epoxy Adhesive. In: Materia, 25(3), pp. 1-8. https://doi.org/10.1590/S1517-707620200003.1104 Go to original source...
  22. SHIGEMATSU, A., MIZOUE, N., KAJISA, T., YOSHIDA, S. (2011). Importance of Rubberwood in Wood Export of Malaysia. In: New Forests, 1995, pp. 179-189. https://doi.org/10.1007/s11056-010-9219-7 Go to original source...
  23. CHEN, Z., YAN, N., SAM-BREW, S., SMITH, G., DENG, J. (2014). Investigation of Mechanical Proper-ties of Sandwich Panels made of paper honeycomb core and wood composite skins by Experimental Test-ing and Finite Element (Fe) Modelling Methods. In: European Journal of Wood and Wood Products, 72(3), pp. 311-319. https://doi.org/10.1007/s00107-014-0782-z Go to original source...
  24. RATNASINGAM, J., IORAŞ, F., AND WENMING, L. (2011). Sustainability of the Rubberwood Sector in Malaysia. In: Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), pp. 305-311. https://doi.org/10.15835/nbha3927195 Go to original source...
  25. DURST, P.B., KILLMANN, W., BROWN, C. (2004). Asia's New Woods. In: Journal of Forestry, 102(4), pp. 46-53. https://doi.org/10.1093/jof/102.4.46 Go to original source...
  26. LOPEZ, Y.M., PAES, J.B., AND MEDEIROS, J.R. (2020). Characterization of the Production Process of Wood Plastic Composite from Sawdust of Pinus and Recycled Thermoplastics. In: Engenharia Florestal: De-safios, Limites e Potencialidade, pp. 236-247. https://downloads.editoracientifica.org/articles/200700667.pdf [Accessed on 8th June 2021] Go to original source...
  27. AMINI, M.H.M., HASHIM, R., SULAIMAN, N.S., SULAIMAN, O., LAZIM, A.M. (2019). Environmentally Friendly Wood Composite Fabricated From Rubberwood Using Citric Acid Esterified Oil Palm Starch. In: Cellulose Chemistry and Technology, 53(5-6), pp. 551-559. https://www.cellulosechemtechnol.ro/pdf/CCT5-6(2019)/p.551-559.pdf [Accessed on 8th June 2021] Go to original source...
  28. SIENKIEWICZ, M., JANIK, H., BORZĘDOWSKA-LABUDA, K., KUCIŃSKA-LIPKA, J. (2017). Envi-ronmentally Friendly Polymer-Rubber Composites Obtained from Waste Tyres: A Review. In: Journal of Cleaner Production, 147, pp. 560-571. https://doi.org/10.1016/j.jclepro.2017.01.121 Go to original source...
  29. MANOBALA, K.S., PRABHAKARAN, S., GAUTHAM, R., SATHISH KUMAR, M., BALA GANESAN, A., NITHISH, C. (2020). Investigation of Mechanical and Thermal Behaviour of Natural Sandwich Composite Materials for Partition Walls. In: International Journal of Research and Review, 7, pp. 211-216. https://d1wqtxts1xzle7.cloudfront.net/63594878/IJRR003120200611-34814-1wvl5sn.pdf [Accessed on 8th of June, 2021]
  30. TEACA, C.A., TANASA, F., AND ZANOAGA, M. (2018). Multi-component Polymer Systems Compris-ing Wood as Bio-based Component and Thermoplastic Polymer Matrices - An Overview. In: BioResources, 13(2), pp. 4728-4769. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_Review_Teaca_Polymer_Systems_Wood_Thermoplastics_Matrices/6098 [Accessed on 8th June 2021] Go to original source...
  31. HOMKHIEW, C., RATANAWILAI, T., THONGRUANG, W. (2015). Composites from Recycled Poly-propylene and Rubberwood Flour: Effects of Composition on Mechanical Properties. In: Journal of Thermoplastic Composite Materials, 28(2), pp. 179-194. https://doi.org/10.1177%2F0892705712475019 Go to original source...
  32. RATANAWILAI, T., HOMKHIEW, C., THONGRUANG, W. (2017). Optimising Formulation on Weathering Resistance of Recycled Polypropylene and Rubberwood Flour Composites. In: Journal of Tropical Forest Science, 29(2), pp. 215-226. http://www.jstor.org/stable/44160939 [Accessed on 8th June 2021]
  33. SAKULKIT, P., PALAMANIT, A., DEJCHANCHAIWONG, R., REUBROYCHAROEN, P. (2020). Characteristics of Pyrolysis Products from Pyrolysis and Co-Pyrolysis of Rubber Wood and Oil Palm Trunk Biomass for Biofuel and Value-Added Applications. In: Journal of Environmental Chemical Engineering, 8(6), pp. 104561. https://doi.org/10.1016/j.jece.2020.104561 Go to original source...
  34. MURUGANANTHAM, R., HSIEH, T.-H., LIN, C.-H., LIU, W.R. (2019). Bio-Oil Derived Hierarchical Porous Hard Carbon from Rubber Wood Sawdust via A Template Fabrication Process as Highly Stable Anode for Sodium-Ion batteries. In: Materials Today Energy, 14, pp. 100346. https://doi.org/10.1016/j.mtener.2019.100346 Go to original source...
  35. WIDYARANI, COULEN, S.C.W., SANDERS, J.P.M., BRUINS, M.E. (2017). Valorisation of Proteins from Rubber Tree. In: Waste and Biomass Valorization, 8(4), pp. 1027-1041. https://doi.org/10.1007/s12649-016-9688-9 Go to original source...
  36. UDO, M.D., AHAMEFULE, F.O., IBEAWUCHI, J.A., EKPO, J.S. (2020). Lactating Performance of West African Dwarf Does Fed Dietary Levels of Boiled Rubber Seed Meal Based Diets. In: Nigerian Journal of Animal Production, 47(4), pp. 227-236. https://doi.org/10.51791/njap.v47i4.105 Go to original source...
  37. HOMKHIEW, C., RAWANGWONG, S., BOONCHOUYTAN, W., THONGRUANG, W., RATANAWILAI, T. (2018). Composites from Thermoplastic Natural Rubber Reinforced Rubberwood Sawdust: Effects of Sawdust Size and Content on Thermal, Physical, and Mechanical Properties. In: Inter-national Journal of Polymer Science, 2018, pp. 1-12. https://doi.org/10.1155/2018/7179527 Go to original source...
  38. JENNISE, T.T.T., YAAKOB, M.Y., SIHOMBING, H., ABDULLAH, A. (2017). Influence of Facesheet Thickness of Rubber Wood Honeycomb Composites on Flexural Properties. In: Journal of Advanced Research in Applied Mechanics, 1(1), pp. 1-8. https://www.akademiabaru.com/doc/ARAMV29_N1_P1_8.pdf [Ac-cessed on 8th of June, 2021]
  39. JUNIOR, H., OHTO, J., SILVA, L., PALMA, H., BALLARIN, A. (2015). Potential of rubberwood (Hevea brasiliensis) for structural use after the period of latex extraction: a case study in Brazil. In: Journal of Wood Science, 61(4), pp. 384-390. https://doi.org/10.1007/s10086-015-1478-7 Go to original source...
  40. HOMKHIEW, C., RATANAWILAI, T., THONGRUANG, W. (2015). Minimizing the creep of recycled polypropylene/rubberwood flour composites with mixture design experiments. In: Journal of Composite Materials, 49(1), pp. 17-26. https://doi.org/10.1177%2F0021998313514257 Go to original source...
  41. SHAABAN, A., SE, S.M., IBRAHIM, I.M., AHSAN, Q. (2015). Preparation of Rubber Wood Sawdust-Based Activated Carbon and Its Use As A Filler of Polyurethane Matrix Composites for Microwave Ab-sorption. In: New Carbon Materials, 30(2), pp. 167-175. https://doi.org/10.1016/S1872-5805(15)60182-2 Go to original source...
  42. PETCHWATTANA, N., COVAVISARUCH, S. (2014). Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly (Lactic Acid) and Rubber Wood Sawdust (Hevea Brasiliensis). In: Journal of Bionic Engineering, 11(4), pp. 630-637. https://doi.org/10.1016/S1672-6529(14)60074-3 Go to original source...
  43. HAO, J., WU, X., OPORTO, G., WANG, J., DAHLE, G., NAN, N. (2018). Deformation and Failure Behaviour of Wooden Sandwich Composites with Taiji Honeycomb Core under a Three-Point Bending Test. In: Materials, 11(11), pp. 2325. https://doi.org/10.3390/ma11112325 Go to original source...
  44. OSEI-ANTWI, M., DE CASTRO, J., VASSILOPOULOS, A.P., KELLER, T. 2014. Fracture in Complex Balsa Cores of Fiber-Reinforced Polymer Sandwich Structures. In: Construction and Building Materials, 71, pp. 194-201. https://doi.org/10.1016/j.conbuildmat.2014.08.029 Go to original source...
  45. DUTRA, J.R., MONI RIBEIRO FILHO, S.L., CHRISTOFORO, A.L., PANZERA, T.H., SCARPA, F. 2019. Investigations on Sustainable Honeycomb Sandwich Panels Containing Eucalyptus Sawdust, Piassava and Cement Particles. In: Thin-Walled Structures, 143, pp. 106191. https://doi.org/10.1016/j.tws.2019.106191 Go to original source...
  46. CAI, L., ZHANG, D., ZHOU, S., XU, W. (2018). Investigation on Mechanical Properties and Equivalent Model of Aluminum Honeycomb Sandwich Panels. In: Journal of Materials Engineering and Performance, 27(12), pp. 6585-6596. https://doi.org/10.1007/s11665-018-3771-2 Go to original source...
  47. CHEN, A.Y., LI, D.F., ZHANG, J.B., LIU, F., LIU, X.R., LU, J. (2011). Study of Toughening Mechanisms through the Observations of Crack Propagation in Nanostructured and Layered Metallic Sheet. In: Materials Science and Engineering: A, 528(29-30), pp. 8389-8395. https://doi.org/10.1016/j.msea.2011.07.063 Go to original source...
  48. RAMESH, M.N.V., SURESH;, A.S., KUMAR, A.S. (2020). Mechanical Behaviour of Aluminium (Al6061) Metal Matrix Composites Reinforced with Al2O3 and Sic. In: Material Science, 7(4), pp. 30-36. https://doi.org/10.26634/jms.7.4.14830 Go to original source...
  49. KHAN, S., LOKEN, H.Y. (2007). Bonding of Sandwich Structures - The Facesheet/Honeycomb Inter-face - A Phenomenological Study. In: Advanced Fibers, pp. 1-9. http://foradenizcilik.com/kutuphane/wp.pdf [Accessed on 8th June, 2021]
  50. SHARINA, N., ZAKARI, A., MOHAMED, J.J., BASYIRAH, N., ABDUL, A., ANJANG, A., RAHMAN, A., RABIDIN, Z.A. (2018). Effects of Core Grain Orientation on the Mechanical Properties of Wood Sandwich Composite. In: Journal of Tropical Resources and Sustainable Science, 6(1), pp. 27-30. https://www.jtrss.org/JTRSS/volume6/JTRSS-13-11-17-MAZ35/6-1-27-30.pdf [Accessed on 8th June 2021] Go to original source...
  51. VITALE, J.P., FRANCUCCI, G., XIONG, J., STOCCHI, A. (2017). Failure Mode Maps of Natural and Synthetic Fiber Reinforced Composite Sandwich Panels. In: Composites Part A: Applied Science and Manufacturing, 94, pp. 217-225. https://doi.org/10.1016/j.compositesa.2016.12.021 Go to original source...
  52. KRZY, A., MAZUR, M.B., GAJEWSKI, M., DROZD, K., KOMOREK, A., PAWE, B.P. (2016). Sand-wich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties. In: International Journal of Aerospace Engineering, pp. 1-10. https://doi.org/10.1155/2016/7816912 Go to original source...
  53. MANALO, A.C. (2013). Behaviour of Fibre Composite Sandwich Structures under Short and Asymmetrical Beam Shear Tests. In: Composite Structures, 99, pp. 339-349. https://doi.org/10.1016/j.compstruct.2012.12.010 Go to original source...
  54. SADIGHI, M., DEHKORDI, A.A., KHODAMBASHI, R. (2010). A Theoretical and Experimental Study of Failure Maps of Sandwich Beams with Composite Skins and Honeycomb Core. In: International Journal of Modelling, Identification, Simulation & Control, 42(1), pp. 37-47. https://www.sid.ir/en/journal/ViewPaper.aspx?id=322062 [Accessed on 8th June 2021]
  55. LEE, H.S., HONG, S.H., LEE, J.R., KIM, Y.K. (2002). Mechanical Behavior and Failure Process During Compressive and Shear Deformation of Honeycomb Composite at Elevated Temperatures. In: Journal of Materials Science, 37(6), pp. 1265-1272. https://doi.org/10.1023/A:1014344228141 Go to original source...
  56. HAN, X., AKHMET, G., ZHANG, W., CHAO, Y.X., JIN, Y., YU, Y., HU, P., IBRAIMOV, A. (2019). The Effect of Adhesive Fillet on Mechanical Performance of Adhesively Bonded Corrugated Sandwich Structures: An Experimental-Numerical Study. In: Journal of Adhesion, 96(5), pp. 515-537. https://doi.org/10.1080/00218464.2019.1657417 Go to original source...
  57. YE, G., XU, Q., CHENG, Y., FAN, Z., LI, Q., QIN, J., LI, S., HU, Y. (2019). Compression Properties of Two-Dimensional Wood-Based Dowel Lattice Structure Filled With Polyurethane Foam. In: BioResources, 14(4), pp. 8849-8865. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_4_8849_Ye_Compression_Property_Two_Dimensional_Wood/7169 [Accessed on 8th June 2021] Go to original source...
  58. CHEN, C., LI, Y., GU, Y., LI, M., ZHANG, Z. (2017). Effect of MWCNTs Added by Electrostatic Flock-ing Method on Adhesion of Carbon Fiber Prepreg/Nomex Honeycomb Sandwich Composites. In: Materials and Design, 127(37), pp. 15-21. https://doi.org/10.1016/j.matdes.2017.04.025 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.