Manufacturing Technology 2022, 22(2):211-217 | DOI: 10.21062/mft.2022.019

Cutting Forces in the Milling of Difficult-to-Machine Material used in the Aero Space Industry Using a Monolithic Ceramic Milling Cutter

Silvia Slabejová ORCID..., Jozef Holubjak ORCID..., Pavol Timko ORCID..., Michal Richtárik ORCID..., Stanislav Krajčoviech ORCID..., Denis Prokein ORCID...
Department of Machining and Manufacturing Technology, Faculty of Mechanical Engineering, University of Zilina, Univerzitná 8215/1, 01026 Žilina, Slovakia

The constantly developing aerospace industry places demands on increasing productivity and produc-tion efficiency. At present, new construction materials are being produced that have better physical and mechanical properties than conventional materials. In addition to new materials, new cutting materials and new machining technologies are being developed. The combination of suitable machin-ing technology, material and tool will achieve excellent product surface quality, long tool life and thus production efficiency. Due to its mechanical and physical properties, technical ceramics can be used in the machining of difficult-to-machine materials, in which there is mechanical stress on blows, impacts, abrasions and other damage. Thanks to these properties, ceramics as a material is very suit-able for the production of machine tools. The presented article deals with the applicability of ceramic milling cutters in high-speed machining of nickel alloy, which is used mainly in the aerospace indus-try. The evaluation of the experiment took place by means of DoE - analysis of cutting forces, the result of which is the creation of the dependence of cutting forces on cutting conditions. Based on the data obtained, it is possible to continue to further intensify the cutting conditions in the area of high-speed machining.

Keywords: Trochoidal Milling, Surface Quality, Monolithic Ceramic Cutter
Grants and funding:

This article was funded by the University of Žilina project APVV 15-0405 – “Complex use of X-ray diffractometry for identification and quantification of functional properties of dynamically loaded structural elements from important technical materials.” This article was funded by the University of Žilina project 313011ASY4 – “ Strategic implementation of additive technologies to strengthen the intervention capacities of emergencies caused by the COVID-19 pandemic.”

Received: October 4, 2021; Revised: March 3, 2022; Accepted: March 23, 2022; Prepublished online: March 31, 2022; Published: May 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Slabejová S, Holubjak J, Timko P, Richtárik M, Krajčoviech S, Prokein D. Cutting Forces in the Milling of Difficult-to-Machine Material used in the Aero Space Industry Using a Monolithic Ceramic Milling Cutter. Manufacturing Technology. 2022;22(2):211-217. doi: 10.21062/mft.2022.019.
Download citation

References

  1. CONSTANTIN, C., CONSTANTIN, G. (2013). Empirical Model of The Cutting Forces. In: Milling, Proceedings in Manufacturing Systems, Vol. 8, No. 4.
  2. JEŠIC, D., KOVAČ, P., PLAVŠIC, M., ŠOOŠ, Ľ., SARJANOVIC, D. (2018). Wear resistance of aus-tempered pearlitic ductile iron. In: Metal Materials, Vol. 56, pp.415-418 Go to original source...
  3. ŠAJGALÍK, M., CZÁN, A., DRBÚL, M., DANIŠ, I., MIKLOŠ, M., BABÍK, O., JOCH, R. (2017). Identification of technological parameters when machining Ni-alloys by monolithic ceramic milling tool. In: Procedia Manufacturing, Vol. 14, pp. 51-57 Go to original source...
  4. PLETA A, LAUINE M. (2016). Cutting Forces Investigation of Trochoidal Milling in Nickel-Based Superalloy, In: Procedia Manufacturing, Vol. 5, pp. 1348-1356, doi: 10.1016/j.promfg.2016.08.105 Go to original source...
  5. ČEP, R., PETRŮ, J., ZLÁMAL, T., VALÍČEK, J., HARNIČÁROVÁ, M., JANÁSEK, A., ČEPOVÁ, L. (2013). Influence of feed speed on machined surface quality, Metal 2013 - international scientific confer-ence, 15. - 17. 5. 2013, Brno, Czech Republic, EU
  6. VALÍČEK, J.; CZÁN, A.; HARNIČÁROVÁ, M.; ŠAJGALÍK, M.; KUŠNEROVÁ, M.; CZÁNOVÁ, T.; KOPAL, I.; GOMBÁR, M.; KMEC, J.; ŠAFÁŘ, M. (2019). A new way of identifying, predicting and reg-ulating residual stress after chip-forming machining. In: International Journal of Mechanical Science. Vol. 155, pp. 343-359. doi:10.1016/j.ijmecsci.2019.03.007 Go to original source...
  7. KRAHMER, D.M.; HAMEED, S.; SANCHEZ, A.J.E.; PEREZ, D.; CANALES, J.; DE LACALLE, L.N. (2019). Wear and MnS Layer Adhesion in Uncoated Cutting Tools When Dry and Wet Turning Free-Cutting Steels. In: Metals 2019, Vol. 9, pp. 556. doi:10.3390/met9050556. Go to original source...
  8. MALÝ, J.; ZEMAN, P. (2006). Dry milling of Ti6Al4V in high-speed area. In M Průmyslové spektrum, No. 12, pp.100., ISSN 1212-2572.
  9. MOUFKI, A., LE COZ, G., DUDZINSKI, D. 2017. End milling of Inconel 718 superalloy - An analytical modelling. In: Procedia CIRP, Vol. 58, pp. 358-363 Go to original source...
  10. DE LACALLE, L.N.; LAMIKIZ, A.; MUNOA, J.; SALGADO, M.A.; SANCHEZ, J.A. (2006). Improving the high speed finishing of forming tools for advanced high-strength steels (AHSS) In: International Journal of Advanced Manufacturing Technologies, Vol. 29, pp. 49-63. Go to original source...
  11. KOVÁŘ, J. (2008). Theory and practice of high-speed milling, dissertation thesis In: Vědecké spisy Vysokého učení technického v Brně, edition PhD Thesis, Vol. 518, 2008, ISSN 1213-4198
  12. KUBALA O. (2020). Study of the implementation of monolithic ceramic milling tools for nickel superalloys machining in high cutting speeds, Dissertation thesis, Univeristy of Zilina, Faculty of Mechanical Engineering, Department of Machining and Manufacturing Technology, 2020, Zilina
  13. BUDAK, E., ALTINTAS, S., ARMAREGO, E. J. A. (1996). Prediction of milling force coefficients from orthogonal cutting data. In: Transaction of the ASME Go to original source...
  14. NING, J.; NGUYEN, V.; LIANG, S.Y. (2019). Analytical modeling of machining forces of ultra-fine-grained titanium In: International Journal of Advanced Manufacturing Technologies, Vol. 101, pp. 627-636. Go to original source...
  15. CZÁN, A., ŠAJGALÍK, M., ZAUŠKOVÁ, L., ČEP, R., RYŠAVÁ, Z., SORDI, V.L. (2017). Investigation of stress status in the micro-space of surface and subsurface layers. In: Communications: scientific letters of the University of Žilina. Vol. 19, no. 2, pp. 112. Go to original source...
  16. NESHTA, A., KRYVORUCHKO, D., HATALA, M., IVANOV, V., BOTKO, F., RADCHENKO, S., AND MITAL, D. (2018). Technological Assurance of High-Efficiency Machining of Internal Rope Threads on Computer Numerical Control Milling Machines. In: ASME. Journal of Manufacturing Science and Engineering, Vol. 140, No. 7, doi:10.1115/1.4039062 Go to original source...
  17. ZHOU, Y., TIAN, Y., JING, X., EHMANN, K. (2017). A novel instantaneous uncut chip thickness model for mechanistic cutting force model in micro-end-milling, In: International Journal of Advanced Manufacturing Technology, Vol. 93, pp. 2305-2319 Go to original source...
  18. ŠAJGALÍK, M.; KUŠNEROVÁ, M.; HARNIČÁROVÁ, M.; VALÍČEK, J.; CZÁN, A.; CZÁNOVÁ, T.; DRBÚL, M.; BORZAN, M.; KMEC, J. (2020). Analysis and Prediction of the Machining Force Depend-ing on the Parameters of Trochoidal Milling of Hardened Steel. In: Applied Sciences, Vol. 10, No. 5, pp. 1788. Go to original source...
  19. WASZCZUK, K.; SKOWRONEK, H.; KAROLCZAK, P.; KOWALSKI, M.; KOLODZIEJ, M. (2019). Influence of the Trochoidal Tool Path on Quality Surface of Groove Walls. In: Advances in Science and Technology. Research Journal, Vol. 13, pp. 38-42. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.