Manufacturing Technology 2022, 22(3):347-355 | DOI: 10.21062/mft.2022.032

Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies

Pavol Timko ORCID..., Tatiana Czánová ORCID..., Andrej Czán ORCID..., Silvia Slabejová ORCID..., Jozef Holubjak ORCID..., Miroslav Cedzo ORCID...
Department of Machining and Production Engineering, Faculty of Mechanical Engineering, University of ®ilina 1, 010 26, ®ilina, Slovakia

Atomic Diffusion Additive Manufacturing (ADAM) is a recent metal sintering process based on known composite printing technology. ADAM can be classified as indirect additive production using fibre of metal powder bound in a plastic matrix. The plastic binder allows the metal powder to remain in place when is printing. Thus, a "green part" is printed and then the plastic binder is removed by the post-washing and sintering process. The aim of this work is providing a brief description of the ADAM process patented by Markforged. Furthermore, the main task was to compare the technology with other sintering technology, namely SLM technology. It works on the basis of selective bonding of metal powder using the thermal energy of the laser beam. Parameters, such as dimensional and shape accuracy, roughness of printed surfaces or tensile strength of printed samples were examined and compared. Dimensional accuracy of the ADAM process was evaluated using ISO IT grades - determined on the basis of the reference standard. The observed accuracy of the sintering process was comparable to traditional production processes.

Keywords: Additive Production, Markforged, Sintering, SLM, 17-4 PH, 316L–0407, Roughness
Grants and funding:

This article was funded by the University of ®ilina project APVV 15-0405 – “Complex use of X-ray diffractometry for identification and quantification of functional properties of dynamically loaded structural elements from important technical materials.” This article was funded by the University of ®ilina project 313011ASY4 – “ Strategic implementation of additive technologies to strengthen the intervention capacities of emergencies caused by the COVID-19 pandemic.”

Received: October 4, 2021; Revised: June 3, 2022; Accepted: June 6, 2022; Prepublished online: June 6, 2022; Published: July 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Timko P, Czánová T, Czán A, Slabejová S, Holubjak J, Cedzo M. Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. Manufacturing Technology. 2022;22(3):347-355. doi: 10.21062/mft.2022.032.
Download citation

References

  1. TRIMECH (2021). A Brief History of Additive Manufacturing. In: TriMech Blog [online]; https://blog.trimech.com/a-brief-history-of-additive-manufacturing
  2. GALATI, M.; MINETOLA, P. (2019). Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. In: Materials , Vol. 12, 4122. https://doi.org/10.3390/ma12244122 Go to original source...
  3. BENIAK, J. (2014). Systémy rapid prototyping. STU Publisher, Bratislava. ISBN: 978-80-227-4287-0
  4. LEE, H.; LIM, C.H.J.; LOW, M.J.; THAM, N.; MURUKESHAN, V.M.; KIM, Y.-J. (2017). Lasers in additive manufacturing, In: Int. J. Precis. Eng. Manuf. Green Technol, No. 4, pp. 307-322. Go to original source...
  5. ROUDNICKA M., BAYER F., MICHALCOVA A., KUBASEK J., ALZUBI E., VOJTECH D., (2020) Biomedical titanium alloy prepared by additive manufacturing: Effect of processing on tribology. In: Manufacturing Technology ;20(6):809-816. doi: 10.21062/mft.2020.112. Go to original source...
  6. GIBSON, I.; ROSEN, D.W.; STUCKER, B. (2015). Additive Manufacturing Technologies; Springer: New York, NY, USA Go to original source...
  7. SAADLAOUI, Y.; MILAN, J.-L.; ROSSI, J.-M.; CHABRAND, P. (2017). Topology optimization and additive manufacturing. Comparison of conception methods using industrial codes. In: J. Manuf. Syst., No. 43, pp. 178-186. Go to original source...
  8. DRBUL, M., MARTIKAN, P., BRONCEK, J., LITVAJ, I. a SVOBODOVA, J., (2018). Analysis of roughness profile on curved surfaces. In: Innovative technologies in engineering production (itep'18). 17 ave du hoggar parc d activites coutaboeuf bp 112, f-91944 cedex a, france: e d p sciences. MATEC Web of Conferences Go to original source...
  9. BIAMINO, S.; PENNA, A.; ACKELID, U.; SABBADINI, S.; TASSA, O.; FINO, P.; PAVESE, M.; GENNARO, P.; BADINI, C. (2011). Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation. In: Intermetallics, Vol. 19, pp. 776-781 Go to original source...
  10. BENIAK, J., KRI®AN, P., MATÚ©, M., ©AJGALÍK, M. (2018). Experimental testing of PLA biodegradable thermoplastic in the frame of 3D printing FDM technology. In: MATEC Web of Conferences. Go to original source...
  11. VALICEK, J., CEP, R., ROKOSZ, K., LUKIANOWICZ, C., KOZAK, D., ZELENAK, M., KOSTIAL, P., HLOCH, S., HARNICAROVA, M., HLAVACEK, P., HALUZIKOVA, B., (2012). New way to take control of a structural grain size in the formation of nanomaterials by extrusion. In: Materialwissenschaft und werkstofftechnik. Vol. 43, no. 5, SI, p. 405-411. DOI 10.1002/mawe.201200973 Go to original source...
  12. KURZYNOWSKI, T.; CHLEBUS, E.; KU¬NICKA, B.; REINER, J.; (2012). Parameters in Selective Laser Melting for processing metallic powders. In: Proceedings of SPIE. 8239. 823914. 10.1117/12.907292 Go to original source...
  13. BLATNICKÁ, M., ©AJGALÍK, M., SÁGA, M., (2017). Residual stress analysis after laser welding. In: EAN 2017 - 55th Conference on Experimental Stress Analysis 2017. pp. 519-524. ISBN 9788055331676
  14. ROUDNICKA M., MISURAK M., VOJTECH D., (2019). Differences in the Response of Additively Manufactured Titanium Alloy to Heat Treatment - Comparison between SLM and EBM. In: Manufacturing Technology. ;19(4):668-673. doi: 10.21062/ujep/353.2019/a/1213-2489/MT/19/4/668. Go to original source...
  15. KUČEROVÁ L., BURDOVÁ K., JENÍČEK ©., VOLKMANNOVÁ J., (2022) Microstructure and Mechanical Properties of 3D Printed Tool Steel after Various Precipitation Hardening Treatments. In: Manufacturing Technology.; 22(2):185-191. doi: 10.21062/mft.2022.030. Go to original source...
  16. H3D (2021). DMLS/SLM. In: H3D Blog, [online]. https://www.h3d.sk/sk/dmlsslm
  17. T. J. HINTON, Q. JALLERAT, R. N. PALCHESKO, J. H. PARK, M. S. GRODZICKI, H.-J. SHUE,M. H. RAMADAN, A. R. HUDSON, A. W. FEINBERG (2015) Three-dimensional printing of complexbiological structures by freeform reversible embedding of suspended hydrogels. In: Sci. Adv.1. e1500758 (2015) Go to original source...
  18. JOCH, R., PILC, J., DANI©, I., DRBÚL, M., KRAJČOVIECH, S., (2019). Analysis of surface roughness in turning process using rotating tool with chip breaker for specific shapes of automotive transmission shafts. In: Transportation Research Procedia. 2019. p. 295-301 Go to original source...
  19. RENISHAW (2021). RenAM 500 metal additive manufacturing (3D printing) systems. In: Renishaw Products, [online]; https://www.renishaw.com/en/renam-500-metal-additive-manufacturing-3d-printing-systems--37011
  20. SAGA M., BARNIK F., VASKO M., HANDRIK., M KOPAS P., (2020). Identification of Physical Characteristic of Composite Materials Produced by Additive Technology from Perspective of Selected Mechanical Properties. In: ACTA PHYSICA POLONICA A. Vol. 138, no. 2, p. 249-252. DOI 10.12693/APhysPolA.138.249 Go to original source...
  21. RENISHAW (2021). SS 316L - 0407 Stainless Steel , In: Renishaw Resource centre, [online]; https://tech-labs.com/sites/images/renishaw/data-sheets/H-5800-3001-01-A_SS_316L-0407_material_data_sheet.pdf
  22. HAJNYS J., PAGAC, M., MESICEK J., PETRU J., SPALEK F., (2020). Research of 316l metallic powder for use in SLM 3D printing. In: Advances in materials science. Vol. 20, no. 1, p. 5-15. DOI 10.2478/adms-2020-0001 Go to original source...
  23. MARKFORGED (2021). The Best Metal 3D Printing Materials for Additive Manufacturing. In: Markforged Blog, [online]; https://markforged.com/resources/blog/metal-3d-printing-materials
  24. LEARY, M. (2017). Surface roughness optimisation for selective laser melting (SLM): Accommodating relevant and irrelevant surfaces, In: Laser Additive Manufacturing, Woodhead Publishing, p. 99-118, ISBN: 9780081004333 Go to original source...
  25. MARKFORGED (2021). 17-4 PH Stainless Steel. In: Material Datasheet ,Markforged, [online].; https://static.markforged.com/downloads/17-4-ph-stainless-steel.pdf

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.