Manufacturing Technology 2022, 22(3):267-278 | DOI: 10.21062/mft.2022.039

Influence of Steel Fibers Content on Selected Mechanical Properties - Experimental Tests

Agnieszka Czajkowska ORCID...1, Manuela Ingaldi ORCID...2
1 Faculty of Civil Engineering and Architecture, Kielce University of Technology, 25-314 Kielce. Poland
2 Faculty of Management, Czestochowa University of Technology, 42-201 Częstochowa. Poland

The continuous development of construction due to the great needs of society and industry, the need to build newer and more durable buildings have meant that scientists all the time look for new opportunities to improve the quality of materials used in this field. Above all, concrete, as material commonly used in construction, has been the subject of research for many years in order to improve the properties. Already in antiquity there were the first attempts to modify the building material with fibers. Initially, they were organic fibers. However, the first patent dates from 1874, when A. Bernard patented the idea of strengthening concrete with steel filings [1]. Then, attempts were made to strengthen the concrete with long steel fibers, which was done by H. Alfsen in 1918. Further researches led N. Zitkiewic to test the strength and impact toughness of concrete with the use of pieces of mild steel wire [2]. Steel fibers in concrete were used for the first time by Romuladi and Baston in 1963. In the paper a comparative analysis of selected mechanical properties for concrete and fiber-reinforced concrete, e.g. compressive strength and Young's modulus, was presented. It was checked how the value of Young's modulus and the compressive strength of concrete change depending on the content of steel fibers. Three types of samples were tested: 1 - concrete, 2 – fiber-reinforced concrete containing 0.25% of steel fibers, 3 – fiber-reinforced concrete containing 0.50% of steel fibers. As the analysis has shown, the greater number of steel fibers is not directly proportional to the increase in its compressive strength or the value of Young's modulus.

Keywords: Concrete; Fiber-reinforced concrete; Compressive strength; Young's modulus

Received: March 16, 2022; Revised: June 17, 2022; Accepted: June 21, 2022; Prepublished online: June 22, 2022; Published: July 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Czajkowska A, Ingaldi M. Influence of Steel Fibers Content on Selected Mechanical Properties - Experimental Tests. Manufacturing Technology. 2022;22(3):267-278. doi: 10.21062/mft.2022.039.
Download citation

References

  1. KATZER, J. (2003). Włókna stalowe stosowane do modyfikacji betonu. In: Budownictwo, Technologie, Architektura, 3(23), 46-47.
  2. JAMROŻY, Z. (1995). Drutobeton, Wydawnictwo Politechniki Krakowskiej, Kraków.
  3. BOADU, E.F., WANG, C.C., SUNINDIJO, R.Y. (2020). Characteristics of the Construction Industry in Developing Countries and Its Implications for Health and Safety: An Exploratory Study in Ghana. In: International Journal of Environmental Research and Public Health, 17(11), 4110. Go to original source...
  4. ANAMAN, K.A.; OSEI-AMPONSAH, C. (2007). Analysis of the causality links between the growth of the construction industry and the growth of the macro-economy in Ghana. In: Construction Management and Economics, 25, 951-961. Go to original source...
  5. KLIMECKA-TATAR, D., PAWLOWSKA, G., ORLICKI, R., ZAIKOV, G.E. (2014). Corrosion characteristics in acid, alkaline and the ringer solution of Fe68-xCoxZr10Mo5W2B 15 metallic glasses. In: Journal of the Balkan Tribological Association, 20(1), 124-130.
  6. DEJA, A., DZHUGURYAN, T., DZHUGURYAN, L., KONRADI, O., ULEWICZ, R. (2021). Smart sustainable city manufacturing and logistics: A framework for city logistics node 4.0 operations. In: Energies, 14(24), 8380. Go to original source...
  7. JONŠTA, P., JONŠTA, Z., BROŽOVÁ, S., INGALDI, M., PIETRASZEK, J., KLIMECKA-TATAR, D. (2021). The Effect of Rare Earth Metals Alloying on the Internal Quality of Industrially Produced Heavy Steel Forgings. In: Materials, 14(18), 5160. Go to original source...
  8. LIPIŃSKI, T.; ULEWICZ, R. (2021). The effect of the impurities spaces on the quality of structural steel working at variable loads. In: Open Engineering, 11(1), 233-23. Go to original source...
  9. BLIKHARSKYY, Y., SELEJDAK, J., BOBALO, T., KHMIL, R., VOLYNETS, M. (2021). Influence of the percentage of reinforcement by un-stressed rebar on the deformability of pre-stressed RC beams. In: Production Engineering Archives, 27(3), 212-216. Go to original source...
  10. JAGIELSKA-WIADEREK, K., BALA, H., WIECZOREK, P., RUDNICKI, J., KLIMECKA-TATAR, D. (2009). Corrosion resistance depth profiles of nitrided layers on austenitic stainless steel produced at elevated temperatures. In: Archives of Metallurgy and Materials, 54(1), 115-120.
  11. KRAUS, P., NÁPRSTKOVÁ, N., JIROUNKOVÁ, K., CAIS, J., SVOBODOVÁ, J. (2018). Effect of Heat Treatment on the Microstructure of the Alloy AlSi7CrMnCu2.5. In: Manufacturing Technology, 18(6), 935-942. Go to original source...
  12. SZYMANSKI, P., ZOLNIERUK, M., OLESZCZYK, P., GISTEREK, I., KAJDANOWICZ, T. (2018). Spatio-Temporal Profiling of Public Transport Delays Based on Large-Scale Vehicle Positioning Data From GPS in Wroclaw. In: IEEE Transactions On Intelligent Transportation Systems, 19(11), 3652-3661. Go to original source...
  13. BRYCHT, N. (2021). Assessment of the quality of the repair process of local roads in the rural areas of the Częstochowa and Kłobuck poviats in the context of road safety. In: Production Engineering Archives, 27(4), 232-241. Go to original source...
  14. KARDAS, E., BROŽOVA, S., PUSTEJOVSKÁ, P., JURSOVÁ, S. (2017). The Evaluation of Efficiency of the Use of Machine Working Time in the Industrial Company - Case Study. In: Management Systems in Production Engineering, 25, 241-245. Go to original source...
  15. ANTHOPOULOS, L.G., KOSTAVARA, E., PANTOUVAKIS, J.-P. (2013). An Effective Disaster Recovery Model for Construction Projects. In: Procedia - Social and Behavioral Sciences, 74, 21-30. Go to original source...
  16. CZAJKOWSKA, A., INGALDI, M. (2021). Structural Failures Risk Analysis as a Tool Supporting Corporate Responsibility. In: Journal of Risk and Financial Management, 14(4), 187. Go to original source...
  17. KRYNKE, M. (2019). Modelling of Roller-raceway Contacts in the Slewing Bearing Taking into Account Asymmetrical Load Transfer Through a Roller. In: Manufacturing Technology, 19(6), 979-983. Go to original source...
  18. NICIEJEWSKA, M., MAZUR, M., IDZIKOWSKI, A., OSOCHA, P. (2021). Qualitative analysis of a welded structure based on a temporary bridge construction - a case study. In: 30th Anniversary International Conference on Metallurgy and Materials METAL 2021, Conference Proceedings, Tanger, Ostrava, 1439-1445. Go to original source...
  19. HOLSCHEMACHER, K., MUELLER, T., RIBAKOV, Y. (2010). Effect of steel fibres on mechanical properties of high-strength concrete. In: Materials and Design. 31(5), 2604-2615. Go to original source...
  20. JAMROŻY, Z. (2008). Beton i jego technologie. Wydawnictwo Naukowe PWN, Warszawa.
  21. JASICZAK, J., MIKOŁAJCZAK, P. (2003). Technologia betonu modyfikowanego domieszkami i dodatkami - przegląd tendencji krajowych i zagranicznych. Oficyna Wydawnicza Politechniki Poznańskiej, Poznań.
  22. BRANDT, A.M. (2009). Cement based composites: materials, mechanical properties and performance. Taylor & Francis.
  23. MAIDL, B.R. (1995). Steel fibre reinforced concrete. Ernst&Sohn, Berlin.
  24. STEFAŃCZYK, B. (2010). Budownictwo ogólne, Tom 1, Materiały i wyroby budowlane. Arkady, Warszawa.
  25. PN-EN 206+A2:2021-08 Beton -- Wymagania, właściwości użytkowe, produkcja i zgodność.
  26. ŚLIWIŃSKI, J. (1999). Beton zwykły. Projektowanie i podstawowe właściwości. Polski Cement, Kraków.
  27. RACZKIEWICZ, W. (2019).Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. In: Science and Engineering of Composite Materials, 28(1), 555-567. Go to original source...
  28. CZAJKOWSKA, A., RACZKIEWICZ, W., BACHARZ, M., BACHARZ, K. (2020). Influence of maturing conditions of steel-fibre reinforced concrete on its selected parameters, Construction of optimized energy potential. In: Budownictwo o zoptymalizowanym potencjale energetycznym, 9(1), 47-54. Go to original source...
  29. LUSTOSA, P.R., MAGALHAES, M.D.S. (2019). Influence of fly ash on the compressive strength and young's modulus of concrete. In: 3rd International Conference on Bio-Based Building Materials - ICBBMAt, Belfast, UK, 107-111.
  30. GHAFFAR, A., CHAVAN, A.S., TATWAWADI R.S. (2014). Steel Fibre Reinforced Concrete. In: International Journal of Engineering Trends and Technology (IJETT), 9(15), 791-796 Go to original source...
  31. THOMAS, J., RAMASWAMY, A. (2007). Mechanical Properties of Steel Fiber-Reinforced Concrete. In: ASCE Journal of Materials in Civil Engineering, 19(5), 385-395. Go to original source...
  32. PN-EN 14889-1:2007 Włókna do betonu -- Część 1: Włókna stalowe -- Definicje, wymagania i zgodność.
  33. PN-EN 14889-2:2007 Włókna do betonu. Część 2: Włókna polimerowe. Definicje, wymagania i zgodność.
  34. BALAGURU, P.N., SHAH, S.P. (1992). Fiber reinforced cement composites. McGraw - Hill.
  35. ZYCH, T. (2010). Współczesny fibrobeton - możliwość kształtowania elementów konstrukcyjnych i form architektonicznych. In: Czasopismo Techniczne Architektura, 07(18), 371-386.
  36. MEDDAH, A., BELAGRAA, L., BEDDAR, M. (2015). Effect of the Fibre Geometry on the Flexural Properties of Reinforced Steel Fibre Refractory Concrete. In: Procedia Engineering, 185-191. Go to original source...
  37. KATZER, J. (2006). Steel Fibers and Steel Fiber Reinforced Concrete in Civil Engineering. The Pacific Journal of Science and Technology, 7(1), 53-58.
  38. GLINICKI, M.A. (2010). Beton ze zbrojeniem strukturalnym. XXV wrsztaty pracy projektanta Konstrukcji, Tom 1, Wydawnictwo PZiTB Szczyrk, 279-308.
  39. RACZKIEWICZ, W., KOTEŠ, P., KONEČNÝ, P. (2021). Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. In: Materials, 14(16), 4657. Go to original source...
  40. ESCALANTE-GARCÍA, J.I., SHARP, J.H. (2001). The microstructure and mechanical properties of blended cements hydratem at various temperatures. In: Cement and Concrete Research 31, 695-702. Go to original source...
  41. AMBROZIAK, A., ZIÓŁKOWSKI, P. (2020). Concrete Compressive Strength Under Changing Environmental Conditions During Placement Processes. In: Materials, 13(20), 4577. Go to original source...
  42. MICHAŁOWSKA-MAZIEJUK, D., TEODORCZYK, M, (2018). The use of a concretetesting machine as teaching equipment in engineering education. In: Aparatura Badawcza I Dydaktyczna, 23(2), 56-60.
  43. JUROWSKI, K., GRZESZCZYK, S. (2015), The Influence of Concrete Composition on Young's Modulus. In: Procedia Engineering, 108, 584-591. Go to original source...
  44. PN-EN 12390-13:2014-02 Concrete test. Part 13: Determination of the secant modulus of elasticity in compression.
  45. MICHAŁEK, J. (2015). Determination of the modulus of elasticity of concrete in compression. In: Building Materials, 6, 64-65.
  46. MUSIAŁ, M., GROSEL, J. (2016). Determining the Young's modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams. In: Construction and Building Materials, 121, 44-52. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.